Autonomous Workflow for Multimodal Fine-Grained Training Assistants Towards Mixed Reality
- URL: http://arxiv.org/abs/2405.13034v2
- Date: Wed, 5 Jun 2024 21:47:37 GMT
- Title: Autonomous Workflow for Multimodal Fine-Grained Training Assistants Towards Mixed Reality
- Authors: Jiahuan Pei, Irene Viola, Haochen Huang, Junxiao Wang, Moonisa Ahsan, Fanghua Ye, Jiang Yiming, Yao Sai, Di Wang, Zhumin Chen, Pengjie Ren, Pablo Cesar,
- Abstract summary: This work designs an autonomous workflow tailored for integrating AI agents seamlessly into extended reality (XR) applications for fine-grained training.
We present a demonstration of a multimodal fine-grained training assistant for LEGO brick assembly in a pilot XR environment.
- Score: 28.27036270001756
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Autonomous artificial intelligence (AI) agents have emerged as promising protocols for automatically understanding the language-based environment, particularly with the exponential development of large language models (LLMs). However, a fine-grained, comprehensive understanding of multimodal environments remains under-explored. This work designs an autonomous workflow tailored for integrating AI agents seamlessly into extended reality (XR) applications for fine-grained training. We present a demonstration of a multimodal fine-grained training assistant for LEGO brick assembly in a pilot XR environment. Specifically, we design a cerebral language agent that integrates LLM with memory, planning, and interaction with XR tools and a vision-language agent, enabling agents to decide their actions based on past experiences. Furthermore, we introduce LEGO-MRTA, a multimodal fine-grained assembly dialogue dataset synthesized automatically in the workflow served by a commercial LLM. This dataset comprises multimodal instruction manuals, conversations, XR responses, and vision question answering. Last, we present several prevailing open-resource LLMs as benchmarks, assessing their performance with and without fine-tuning on the proposed dataset. We anticipate that the broader impact of this workflow will advance the development of smarter assistants for seamless user interaction in XR environments, fostering research in both AI and HCI communities.
Related papers
- APT: Architectural Planning and Text-to-Blueprint Construction Using Large Language Models for Open-World Agents [8.479128275067742]
We present an advanced Large Language Model (LLM)-driven framework that enables autonomous agents to construct complex structures in Minecraft.
By employing chain-of-thought decomposition along with multimodal inputs, the framework generates detailed architectural layouts and blueprints.
Our agent incorporates both memory and reflection modules to facilitate lifelong learning, adaptive refinement, and error correction throughout the building process.
arXiv Detail & Related papers (2024-11-26T09:31:28Z) - RA-BLIP: Multimodal Adaptive Retrieval-Augmented Bootstrapping Language-Image Pre-training [55.54020926284334]
Multimodal Large Language Models (MLLMs) have recently received substantial interest, which shows their emerging potential as general-purpose models for various vision-language tasks.
Retrieval augmentation techniques have proven to be effective plugins for both LLMs and MLLMs.
In this study, we propose multimodal adaptive Retrieval-Augmented Bootstrapping Language-Image Pre-training (RA-BLIP), a novel retrieval-augmented framework for various MLLMs.
arXiv Detail & Related papers (2024-10-18T03:45:19Z) - Optimizing Collaboration of LLM based Agents for Finite Element Analysis [1.5039745292757671]
This paper investigates the interactions between multiple agents within Large Language Models (LLMs) in the context of programming and coding tasks.
We utilize the AutoGen framework to facilitate communication among agents, evaluating different configurations based on the success rates from 40 random runs for each setup.
arXiv Detail & Related papers (2024-08-23T23:11:08Z) - ROS-LLM: A ROS framework for embodied AI with task feedback and structured reasoning [74.58666091522198]
We present a framework for intuitive robot programming by non-experts.
We leverage natural language prompts and contextual information from the Robot Operating System (ROS)
Our system integrates large language models (LLMs), enabling non-experts to articulate task requirements to the system through a chat interface.
arXiv Detail & Related papers (2024-06-28T08:28:38Z) - LEGENT: Open Platform for Embodied Agents [60.71847900126832]
We introduce LEGENT, an open, scalable platform for developing embodied agents using Large Language Models (LLMs) and Large Multimodal Models (LMMs)
LEGENT offers a rich, interactive 3D environment with communicable and actionable agents, paired with a user-friendly interface.
In experiments, an embryonic vision-language-action model trained on LEGENT-generated data surpasses GPT-4V in embodied tasks.
arXiv Detail & Related papers (2024-04-28T16:50:12Z) - LLMArena: Assessing Capabilities of Large Language Models in Dynamic
Multi-Agent Environments [35.926581910260076]
We introduce LLMArena, a framework for evaluating the capabilities of large language models in multi-agent dynamic environments.
LLArena employs Trueskill scoring to assess crucial abilities in LLM agents, including spatial reasoning, strategic planning, numerical reasoning, risk assessment, communication, opponent modeling, and team collaboration.
We conduct an extensive experiment and human evaluation among different sizes and types of LLMs, showing that LLMs still have a significant journey ahead in their development towards becoming fully autonomous agents.
arXiv Detail & Related papers (2024-02-26T11:31:48Z) - On the Multi-turn Instruction Following for Conversational Web Agents [83.51251174629084]
We introduce a new task of Conversational Web Navigation, which necessitates sophisticated interactions that span multiple turns with both the users and the environment.
We propose a novel framework, named self-reflective memory-augmented planning (Self-MAP), which employs memory utilization and self-reflection techniques.
arXiv Detail & Related papers (2024-02-23T02:18:12Z) - Interactive Planning Using Large Language Models for Partially
Observable Robotics Tasks [54.60571399091711]
Large Language Models (LLMs) have achieved impressive results in creating robotic agents for performing open vocabulary tasks.
We present an interactive planning technique for partially observable tasks using LLMs.
arXiv Detail & Related papers (2023-12-11T22:54:44Z) - LAMM: Language-Assisted Multi-Modal Instruction-Tuning Dataset,
Framework, and Benchmark [81.42376626294812]
We present Language-Assisted Multi-Modal instruction tuning dataset, framework, and benchmark.
Our aim is to establish LAMM as a growing ecosystem for training and evaluating MLLMs.
We present a comprehensive dataset and benchmark, which cover a wide range of vision tasks for 2D and 3D vision.
arXiv Detail & Related papers (2023-06-11T14:01:17Z) - Chat with the Environment: Interactive Multimodal Perception Using Large
Language Models [19.623070762485494]
Large Language Models (LLMs) have shown remarkable reasoning ability in few-shot robotic planning.
Our study demonstrates that LLMs can provide high-level planning and reasoning skills and control interactive robot behavior in a multimodal environment.
arXiv Detail & Related papers (2023-03-14T23:01:27Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.