論文の概要: FedASTA: Federated adaptive spatial-temporal attention for traffic flow prediction
- arxiv url: http://arxiv.org/abs/2405.13090v2
- Date: Mon, 04 Nov 2024 02:10:00 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-11-05 14:41:35.799167
- Title: FedASTA: Federated adaptive spatial-temporal attention for traffic flow prediction
- Title(参考訳): FedASTA:交通流予測のための適応型時空間注意機能
- Authors: Kaiyuan Li, Yihan Zhang, Huandong Wang, Yan Zhuo, Xinlei Chen,
- Abstract要約: モバイルデバイスとIoT(Internet of Things)デバイスは、今日では大量の異種空間時間データを生成している。
プライバシーの懸念の下で空間的時間的ダイナミクスをモデル化することは依然として難しい問題である。
動的空間時間関係をモデル化するための新しいFedASTAフレームワークを提案する。
- 参考スコア(独自算出の注目度): 30.346763969306398
- License:
- Abstract: Mobile devices and the Internet of Things (IoT) devices nowadays generate a large amount of heterogeneous spatial-temporal data. It remains a challenging problem to model the spatial-temporal dynamics under privacy concern. Federated learning (FL) has been proposed as a framework to enable model training across distributed devices without sharing original data which reduce privacy concern. Personalized federated learning (PFL) methods further address data heterogenous problem. However, these methods don't consider natural spatial relations among nodes. For the sake of modeling spatial relations, Graph Neural Netowork (GNN) based FL approach have been proposed. But dynamic spatial-temporal relations among edge nodes are not taken into account. Several approaches model spatial-temporal dynamics in a centralized environment, while less effort has been made under federated setting. To overcome these challeges, we propose a novel Federated Adaptive Spatial-Temporal Attention (FedASTA) framework to model the dynamic spatial-temporal relations. On the client node, FedASTA extracts temporal relations and trend patterns from the decomposed terms of original time series. Then, on the server node, FedASTA utilize trend patterns from clients to construct adaptive temporal-spatial aware graph which captures dynamic correlation between clients. Besides, we design a masked spatial attention module with both static graph and constructed adaptive graph to model spatial dependencies among clients. Extensive experiments on five real-world public traffic flow datasets demonstrate that our method achieves state-of-art performance in federated scenario. In addition, the experiments made in centralized setting show the effectiveness of our novel adaptive graph construction approach compared with other popular dynamic spatial-temporal aware methods.
- Abstract(参考訳): モバイルデバイスとIoT(Internet of Things)デバイスは、今日では大量の異種空間時間データを生成している。
プライバシーの懸念の下で空間的時間的ダイナミクスをモデル化することは依然として難しい問題である。
フェデレートラーニング(FL)は、プライバシの懸念を減らすために、オリジナルのデータを共有することなく、分散デバイス間のモデルトレーニングを可能にするフレームワークとして提案されている。
パーソナライズド・フェデレーションド・ラーニング(PFL)手法は、データの異種問題にさらに対処する。
しかし,これらの手法はノード間の自然空間関係を考慮しない。
空間関係をモデル化するために,グラフニューラルネトワーク(GNN)に基づくFL手法が提案されている。
しかし、エッジノード間の動的時空間関係は考慮されていない。
中央集権環境における空間時間力学をモデル化するアプローチもいくつかあるが、連合環境下での取り組みは少ない。
これらの課題を克服するために,動的空間的時間的関係をモデル化する新しいフェデレーション適応時空間注意(FedASTA)フレームワークを提案する。
クライアントノードでは、FedASTAはオリジナルの時系列の分解された用語から時間的関係と傾向パターンを抽出する。
次に、サーバノード上でFedASTAはクライアントのトレンドパターンを利用して、クライアント間の動的相関を捉える適応的時間空間認識グラフを構築する。
また,静的グラフと適応グラフを併用したマスク付き空間アテンションモジュールを設計し,クライアント間の空間依存をモデル化する。
5つの実世界の公共交通フローデータセットに対する大規模な実験により,フェデレートされたシナリオにおいて,我々の手法が最先端の性能を達成することを示す。
さらに、集中的な設定で行った実験は、他の一般的な動的時空間認識手法と比較して、我々の新しい適応グラフ構築手法の有効性を示した。
関連論文リスト
- Spatio-Temporal Branching for Motion Prediction using Motion Increments [55.68088298632865]
HMP(Human Motion Prediction)はその多種多様な応用により、人気のある研究トピックとして浮上している。
従来の手法は手作りの機能と機械学習技術に依存している。
HMPのためのインクリメンタル情報を用いた時空間分岐ネットワークを提案する。
論文 参考訳(メタデータ) (2023-08-02T12:04:28Z) - Adaptive Hierarchical SpatioTemporal Network for Traffic Forecasting [70.66710698485745]
本稿では,AHSTN(Adaptive Hierarchical SpatioTemporal Network)を提案する。
AHSTNは空間階層を利用し、マルチスケール空間相関をモデル化する。
2つの実世界のデータセットの実験により、AHSTNはいくつかの強いベースラインよりも優れたパフォーマンスを達成することが示された。
論文 参考訳(メタデータ) (2023-06-15T14:50:27Z) - Multi-Temporal Relationship Inference in Urban Areas [75.86026742632528]
場所間の時間的関係を見つけることは、動的なオフライン広告やスマートな公共交通計画など、多くの都市アプリケーションに役立つ。
空間的に進化するグラフニューラルネットワーク(SEENet)を含むグラフ学習方式によるTrialの解を提案する。
SEConvは時間内アグリゲーションと時間間伝搬を実行し、位置メッセージパッシングの観点から、多面的に空間的に進化するコンテキストをキャプチャする。
SE-SSLは、位置表現学習を強化し、関係の空間性をさらに扱えるように、グローバルな方法でタイムアウェアな自己教師型学習タスクを設計する。
論文 参考訳(メタデータ) (2023-06-15T07:48:32Z) - Dynamic Graph Convolutional Network with Attention Fusion for Traffic
Flow Prediction [10.3426659705376]
本稿では,同期時空間相関をモデル化するための注意融合型動的グラフ畳み込みネットワークを提案する。
我々は、4つの実世界の交通データセットにおいて、我々の手法が18のベースライン法と比較して最先端の性能を上回ることを示す広範な実験を行った。
論文 参考訳(メタデータ) (2023-02-24T12:21:30Z) - Adaptive Graph Spatial-Temporal Transformer Network for Traffic Flow
Forecasting [6.867331860819595]
複雑な時空間相関と非線形トラフィックパターンのため、交通予測は非常に困難である。
既存の研究は主に、空間的相関と時間的相関を別々に考慮して、そのような空間的・時間的依存関係をモデル化する。
本稿では,局所的マルチヘッド自己アテンションを用いた空間時間グラフ上での空間空間的・時間的相関を直接モデル化する。
論文 参考訳(メタデータ) (2022-07-09T19:21:00Z) - Unraveled Multilevel Transformation Networks for Predicting
Sparsely-Observed Spatiotemporal Dynamics [12.627823168264209]
疎分散データサイトからのデータを用いて未知のダイナミクスを予測するモデルを提案する。
合成気候データと実世界の気候データの両方を用いて、我々のアプローチの利点を実証する。
論文 参考訳(メタデータ) (2022-03-16T14:44:05Z) - STJLA: A Multi-Context Aware Spatio-Temporal Joint Linear Attention
Network for Traffic Forecasting [7.232141271583618]
非効率な時空間継手線形注意(SSTLA)と呼ばれる交通予測のための新しいディープラーニングモデルを提案する。
SSTLAは、全時間ノード間のグローバル依存を効率的に捉えるために、ジョイントグラフに線形注意を適用する。
実世界の2つの交通データセットであるイングランドとテンポラル7の実験は、我々のSTJLAが最先端のベースラインよりも9.83%と3.08%の精度でMAE測定を達成できることを示した。
論文 参考訳(メタデータ) (2021-12-04T06:39:18Z) - Spatio-Temporal Joint Graph Convolutional Networks for Traffic
Forecasting [75.10017445699532]
近年、時間グラフモデリング問題として交通予測の定式化に焦点が移っている。
本稿では,道路網における交通予測の精度向上のための新しい手法を提案する。
論文 参考訳(メタデータ) (2021-11-25T08:45:14Z) - Spatial-Temporal Fusion Graph Neural Networks for Traffic Flow
Forecasting [35.072979313851235]
交通流の空間的-時間的データ予測は複雑な空間的依存性と道路間の時間的パターンの動的傾向のために難しい課題である。
既存のフレームワークは通常、与えられた空間隣接グラフと、空間的および時間的相関をモデル化する洗練されたメカニズムを利用する。
本稿では,交通流予測のための空間時間融合グラフニューラルネットワーク(STFGNN)を提案する。
論文 参考訳(メタデータ) (2020-12-15T14:03:17Z) - A Spatial-Temporal Attentive Network with Spatial Continuity for
Trajectory Prediction [74.00750936752418]
空間連続性をもつ空間時間減衰ネットワーク(STAN-SC)という新しいモデルを提案する。
まず、最も有用かつ重要な情報を探るために、空間的時間的注意機構を提示する。
第2に、生成軌道の空間的連続性を維持するために、シーケンスと瞬間状態情報に基づく共同特徴系列を実行する。
論文 参考訳(メタデータ) (2020-03-13T04:35:50Z) - Spatial-Temporal Transformer Networks for Traffic Flow Forecasting [74.76852538940746]
本稿では,長期交通予測の精度を向上させるため,時空間変圧器ネットワーク(STTN)の新たなパラダイムを提案する。
具体的には、有向空間依存を動的にモデル化することにより、空間変換器と呼ばれる新しいグラフニューラルネットワークを提案する。
提案モデルにより,長期間にわたる空間的依存関係に対する高速かつスケーラブルなトレーニングが可能になる。
論文 参考訳(メタデータ) (2020-01-09T10:21:04Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。