FairLENS: Assessing Fairness in Law Enforcement Speech Recognition
- URL: http://arxiv.org/abs/2405.13166v2
- Date: Tue, 28 May 2024 19:10:30 GMT
- Title: FairLENS: Assessing Fairness in Law Enforcement Speech Recognition
- Authors: Yicheng Wang, Mark Cusick, Mohamed Laila, Kate Puech, Zhengping Ji, Xia Hu, Michael Wilson, Noah Spitzer-Williams, Bryan Wheeler, Yasser Ibrahim,
- Abstract summary: We propose a novel and adaptable evaluation method to examine the fairness disparity between different models.
We conducted fairness assessments on 1 open-source and 11 commercially available state-of-the-art ASR models.
- Score: 37.75768315119143
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Automatic speech recognition (ASR) techniques have become powerful tools, enhancing efficiency in law enforcement scenarios. To ensure fairness for demographic groups in different acoustic environments, ASR engines must be tested across a variety of speakers in realistic settings. However, describing the fairness discrepancies between models with confidence remains a challenge. Meanwhile, most public ASR datasets are insufficient to perform a satisfying fairness evaluation. To address the limitations, we built FairLENS - a systematic fairness evaluation framework. We propose a novel and adaptable evaluation method to examine the fairness disparity between different models. We also collected a fairness evaluation dataset covering multiple scenarios and demographic dimensions. Leveraging this framework, we conducted fairness assessments on 1 open-source and 11 commercially available state-of-the-art ASR models. Our results reveal that certain models exhibit more biases than others, serving as a fairness guideline for users to make informed choices when selecting ASR models for a given real-world scenario. We further explored model biases towards specific demographic groups and observed that shifts in the acoustic domain can lead to the emergence of new biases.
Related papers
- From Efficiency to Equity: Measuring Fairness in Preference Learning [3.2132738637761027]
We evaluate fairness in preference learning models inspired by economic theories of inequality and Rawlsian justice.
We propose metrics adapted from the Gini Coefficient, Atkinson Index, and Kuznets Ratio to quantify fairness in these models.
arXiv Detail & Related papers (2024-10-24T15:25:56Z) - Fairness Evaluation with Item Response Theory [10.871079276188649]
This paper proposes a novel Fair-IRT framework to evaluate fairness in Machine Learning (ML) models.
Detailed explanations for item characteristic curves (ICCs) are provided for particular individuals.
Experiments demonstrate the effectiveness of this framework as a fairness evaluation tool.
arXiv Detail & Related papers (2024-10-20T22:25:20Z) - Editable Fairness: Fine-Grained Bias Mitigation in Language Models [52.66450426729818]
We propose a novel debiasing approach, Fairness Stamp (FAST), which enables fine-grained calibration of individual social biases.
FAST surpasses state-of-the-art baselines with superior debiasing performance.
This highlights the potential of fine-grained debiasing strategies to achieve fairness in large language models.
arXiv Detail & Related papers (2024-08-07T17:14:58Z) - Evaluating the Fairness of Discriminative Foundation Models in Computer
Vision [51.176061115977774]
We propose a novel taxonomy for bias evaluation of discriminative foundation models, such as Contrastive Language-Pretraining (CLIP)
We then systematically evaluate existing methods for mitigating bias in these models with respect to our taxonomy.
Specifically, we evaluate OpenAI's CLIP and OpenCLIP models for key applications, such as zero-shot classification, image retrieval and image captioning.
arXiv Detail & Related papers (2023-10-18T10:32:39Z) - DualFair: Fair Representation Learning at Both Group and Individual
Levels via Contrastive Self-supervision [73.80009454050858]
This work presents a self-supervised model, called DualFair, that can debias sensitive attributes like gender and race from learned representations.
Our model jointly optimize for two fairness criteria - group fairness and counterfactual fairness.
arXiv Detail & Related papers (2023-03-15T07:13:54Z) - Characterizing Fairness Over the Set of Good Models Under Selective
Labels [69.64662540443162]
We develop a framework for characterizing predictive fairness properties over the set of models that deliver similar overall performance.
We provide tractable algorithms to compute the range of attainable group-level predictive disparities.
We extend our framework to address the empirically relevant challenge of selectively labelled data.
arXiv Detail & Related papers (2021-01-02T02:11:37Z) - Beyond Individual and Group Fairness [90.4666341812857]
We present a new data-driven model of fairness that is guided by the unfairness complaints received by the system.
Our model supports multiple fairness criteria and takes into account their potential incompatibilities.
arXiv Detail & Related papers (2020-08-21T14:14:44Z) - Fairness by Explicability and Adversarial SHAP Learning [0.0]
We propose a new definition of fairness that emphasises the role of an external auditor and model explicability.
We develop a framework for mitigating model bias using regularizations constructed from the SHAP values of an adversarial surrogate model.
We demonstrate our approaches using gradient and adaptive boosting on: a synthetic dataset, the UCI Adult (Census) dataset and a real-world credit scoring dataset.
arXiv Detail & Related papers (2020-03-11T14:36:34Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.