Efficient and Interpretable Information Retrieval for Product Question Answering with Heterogeneous Data
- URL: http://arxiv.org/abs/2405.13173v1
- Date: Tue, 21 May 2024 19:46:35 GMT
- Title: Efficient and Interpretable Information Retrieval for Product Question Answering with Heterogeneous Data
- Authors: Biplob Biswas, Rajiv Ramnath,
- Abstract summary: Expansion-enhanced sparse lexical representation improves information retrieval (IR) by minimizing vocabulary mismatch problems during lexical matching.
We present a hybrid information retrieval mechanism that maximizes lexical and semantic matching while minimizing their shortcomings.
- Score: 2.7624021966289605
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Expansion-enhanced sparse lexical representation improves information retrieval (IR) by minimizing vocabulary mismatch problems during lexical matching. In this paper, we explore the potential of jointly learning dense semantic representation and combining it with the lexical one for ranking candidate information. We present a hybrid information retrieval mechanism that maximizes lexical and semantic matching while minimizing their shortcomings. Our architecture consists of dual hybrid encoders that independently encode queries and information elements. Each encoder jointly learns a dense semantic representation and a sparse lexical representation augmented by a learnable term expansion of the corresponding text through contrastive learning. We demonstrate the efficacy of our model in single-stage ranking of a benchmark product question-answering dataset containing the typical heterogeneous information available on online product pages. Our evaluation demonstrates that our hybrid approach outperforms independently trained retrievers by 10.95% (sparse) and 2.7% (dense) in MRR@5 score. Moreover, our model offers better interpretability and performs comparably to state-of-the-art cross encoders while reducing response time by 30% (latency) and cutting computational load by approximately 38% (FLOPs).
Related papers
- Context-Aware Search and Retrieval Over Erasure Channels [12.794591022795355]
We present an information-theoretic analysis of a remote document retrieval system operating over a symbol erasure channel.<n>The proposed model encodes the feature vector of a query, derived from term-frequency weights of a language corpus.<n>We derive an explicit expression for the retrieval error probability, i.e., the probability under which the less similar document is selected.
arXiv Detail & Related papers (2025-07-16T04:21:46Z) - The Complexity of Learning Sparse Superposed Features with Feedback [0.9838799448847586]
We investigate whether the underlying learned features of a model can be efficiently retrieved through feedback from an agent.
We analyze the feedback complexity associated with learning a feature matrix in sparse settings.
Our results establish tight bounds when the agent is permitted to construct activations and demonstrate strong upper bounds in sparse scenarios.
arXiv Detail & Related papers (2025-02-08T01:54:23Z) - Discrete Subgraph Sampling for Interpretable Graph based Visual Question Answering [27.193336817953142]
We integrate different discrete subset sampling methods into a graph-based visual question answering system.
We show that the integrated methods effectively mitigate the performance trade-off between interpretability and answer accuracy.
We also conduct a human evaluation to assess the interpretability of the generated subgraphs.
arXiv Detail & Related papers (2024-12-11T10:18:37Z) - Likelihood as a Performance Gauge for Retrieval-Augmented Generation [78.28197013467157]
We show that likelihoods serve as an effective gauge for language model performance.
We propose two methods that use question likelihood as a gauge for selecting and constructing prompts that lead to better performance.
arXiv Detail & Related papers (2024-11-12T13:14:09Z) - Efficient Inverted Indexes for Approximate Retrieval over Learned Sparse Representations [8.796275989527054]
We propose a novel organization of the inverted index that enables fast retrieval over learned sparse embeddings.
Our approach organizes inverted lists into geometrically-cohesive blocks, each equipped with a summary vector.
Our results indicate that Seismic is one to two orders of magnitude faster than state-of-the-art inverted index-based solutions.
arXiv Detail & Related papers (2024-04-29T15:49:27Z) - Optimizations of Autoencoders for Analysis and Classification of
Microscopic In Situ Hybridization Images [68.8204255655161]
We propose a deep-learning framework to detect and classify areas of microscopic images with similar levels of gene expression.
The data we analyze requires an unsupervised learning model for which we employ a type of Artificial Neural Network - Deep Learning Autoencoders.
arXiv Detail & Related papers (2023-04-19T13:45:28Z) - What Are You Token About? Dense Retrieval as Distributions Over the
Vocabulary [68.77983831618685]
We propose to interpret the vector representations produced by dual encoders by projecting them into the model's vocabulary space.
We show that the resulting projections contain rich semantic information, and draw connection between them and sparse retrieval.
arXiv Detail & Related papers (2022-12-20T16:03:25Z) - Incorporating Relevance Feedback for Information-Seeking Retrieval using
Few-Shot Document Re-Ranking [56.80065604034095]
We introduce a kNN approach that re-ranks documents based on their similarity with the query and the documents the user considers relevant.
To evaluate our different integration strategies, we transform four existing information retrieval datasets into the relevance feedback scenario.
arXiv Detail & Related papers (2022-10-19T16:19:37Z) - An Empirical Investigation of Commonsense Self-Supervision with
Knowledge Graphs [67.23285413610243]
Self-supervision based on the information extracted from large knowledge graphs has been shown to improve the generalization of language models.
We study the effect of knowledge sampling strategies and sizes that can be used to generate synthetic data for adapting language models.
arXiv Detail & Related papers (2022-05-21T19:49:04Z) - Integrating Semantics and Neighborhood Information with Graph-Driven
Generative Models for Document Retrieval [51.823187647843945]
In this paper, we encode the neighborhood information with a graph-induced Gaussian distribution, and propose to integrate the two types of information with a graph-driven generative model.
Under the approximation, we prove that the training objective can be decomposed into terms involving only singleton or pairwise documents, enabling the model to be trained as efficiently as uncorrelated ones.
arXiv Detail & Related papers (2021-05-27T11:29:03Z) - Adversarial Robustness of Supervised Sparse Coding [34.94566482399662]
We consider a model that involves learning a representation while at the same time giving a precise generalization bound and a robustness certificate.
We focus on the hypothesis class obtained by combining a sparsity-promoting encoder coupled with a linear encoder.
We provide a robustness certificate for end-to-end classification.
arXiv Detail & Related papers (2020-10-22T22:05:21Z) - Knowledge Graph-Augmented Abstractive Summarization with Semantic-Driven
Cloze Reward [42.925345819778656]
We present ASGARD, a novel framework for Abstractive Summarization with Graph-Augmentation and semantic-driven RewarD.
We propose the use of dual encoders---a sequential document encoder and a graph-structured encoder---to maintain the global context and local characteristics of entities.
Results show that our models produce significantly higher ROUGE scores than a variant without knowledge graph as input on both New York Times and CNN/Daily Mail datasets.
arXiv Detail & Related papers (2020-05-03T18:23:06Z) - Learning Discrete Structured Representations by Adversarially Maximizing
Mutual Information [39.87273353895564]
We propose learning discrete structured representations from unlabeled data by maximizing the mutual information between a structured latent variable and a target variable.
Our key technical contribution is an adversarial objective that can be used to tractably estimate mutual information assuming only the feasibility of cross entropy calculation.
We apply our model on document hashing and show that it outperforms current best baselines based on discrete and vector quantized variational autoencoders.
arXiv Detail & Related papers (2020-04-08T13:31:53Z) - New advances in enumerative biclustering algorithms with online
partitioning [80.22629846165306]
This paper further extends RIn-Close_CVC, a biclustering algorithm capable of performing an efficient, complete, correct and non-redundant enumeration of maximal biclusters with constant values on columns in numerical datasets.
The improved algorithm is called RIn-Close_CVC3, keeps those attractive properties of RIn-Close_CVC, and is characterized by: a drastic reduction in memory usage; a consistent gain in runtime.
arXiv Detail & Related papers (2020-03-07T14:54:26Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.