論文の概要: Comparative Analysis of Different Efficient Fine Tuning Methods of Large Language Models (LLMs) in Low-Resource Setting
- arxiv url: http://arxiv.org/abs/2405.13181v1
- Date: Tue, 21 May 2024 20:08:52 GMT
- ステータス: 処理完了
- システム内更新日: 2024-05-25 02:03:26.412404
- Title: Comparative Analysis of Different Efficient Fine Tuning Methods of Large Language Models (LLMs) in Low-Resource Setting
- Title(参考訳): 低リソース環境における大規模言語モデル(LLM)の高精度チューニング法の比較分析
- Authors: Krishna Prasad Varadarajan Srinivasan, Prasanth Gumpena, Madhusudhana Yattapu, Vishal H. Brahmbhatt,
- Abstract要約: 我々は、大規模言語モデル(LLM)の様々な微調整戦略の理解を深めようとしている。
我々は,2つのデータセット(COLAとMNLI)で事前学習したモデルに対して,バニラファインチューニングやPBFT(Pattern-Based Fine-Tuning)のような最先端の手法を比較した。
以上の結果から,バニラFTやPBFTに匹敵する領域外一般化が期待できる可能性が示唆された。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: In the domain of large language models (LLMs), arXiv:2305.16938 showed that few-shot full-model fine-tuning -- namely Vanilla Fine Tuning (FT) and Pattern-Based Fine Tuning (PBFT) --, and In-Context Learning (ICL) generalize similarly on Out-Of-Domain (OOD) datasets, but vary in terms of task adaptation. However, they both pose challenges, especially in term of memory requirements. In this paper, we further try to push the understanding of different fine-tuning strategies for LLM and aim to bring a myriad of these on the same pedestal for an elaborate comparison with full-model fine-tuning on two diverse datasets. To that end, we conducted a series of experiments, beginning with state-of-the-art methods like vanilla fine-tuning and Pattern-Based Fine-Tuning (PBFT) on pre-trained models across two datasets, COLA and MNLI. We then investigate adaptive fine-tuning and the efficiency of LoRA adapters in a few-shot setting. Finally, we also compare an alternative approach that has gained recent popularity -- context distillation -- with the vanilla FT and PBFT with and without few-shot setup. Our findings suggest that these alternative strategies that we explored can exhibit out-of-domain generalization comparable to that of vanilla FT and PBFT. PBFT under-performs Vanilla FT on out-of-domain (OOD) data, emphasizing the need for effective prompts. Further, our adaptive-fine tuning and LoRA experiments perform comparable or slightly worse than the standard fine-tunings as anticipated, since standard fine-tunings involve tuning the entire model. Finally, our context distillation experiments out-perform the standard fine-tuning methods. These findings underscore that eventually the choice of an appropriate fine-tuning method depends on the available resources (memory, compute, data) and task adaptability.
- Abstract(参考訳): 大規模言語モデル(LLMs)の分野において、arXiv:2305.16938は、ほとんどショットのないフルモデルの微調整、すなわちバニラファインチューニング(FT)とパターンベースファインチューニング(PBFT)、およびインコンテキストラーニング(ICL)がOut-Of-Domain(OOD)データセットでも同様に一般化されることを示したが、タスク適応の点で異なる。
しかし、両者とも特にメモリ要件の観点から、課題を提起している。
本稿では,LLMの様々な微調整戦略の理解をさらに進めるとともに,これらを多種多様なデータセットのフルモデル微調整と比較するため,同じ台座に多種多様な微調整戦略を導入することを目的としている。
そこで我々は,2つのデータセット(COLAとMNLI)にまたがる事前学習モデル上で,バニラファインチューニングやPBFT(Pattern-Based Fine-Tuning)のような最先端の手法から,一連の実験を行った。
次に, 適応微調整とLoRAアダプタの効率性について, 数ショット設定で検討する。
最後に、最近のコンテクスト蒸留という別のアプローチと、バニラFTとPBFTを数発のセットアップなしで比較した。
以上の結果から,バニラFTやPBFTに匹敵する領域外一般化が期待できる可能性が示唆された。
PBFTはドメイン外データ(OOD)でVanilla FTを過小評価し、効果的なプロンプトの必要性を強調している。
さらに, 適応微調整とLoRA実験は, 標準微調整がモデル全体のチューニングを伴うため, 従来の微調整と同等あるいはわずかに劣る。
最後に, コンテクスト蒸留実験は, 標準的な微調整法より優れていた。
これらの結果は、最終的には適切な微調整方法を選択することは、利用可能なリソース(メモリ、計算、データ)とタスク適応性に依存していることを示している。
関連論文リスト
- Meta-Learning Adaptable Foundation Models [37.458141335750696]
本稿では,PEFTを組み込んだメタラーニングフレームワークを導入し,未知のタスクに容易に適応可能なモデルを学習する。
この設定では、適応可能なパラメータの集合を見つけるための標準再訓練の準最適性を示す。
次に、これらの理論的洞察をRoBERTaモデルの再訓練に適用し、ConvAI2データセット内の会話の継続を予測する。
論文 参考訳(メタデータ) (2024-10-29T17:24:18Z) - MITA: Bridging the Gap between Model and Data for Test-time Adaptation [68.62509948690698]
テスト時間適応(TTA)は、モデルの一般化性を高めるための有望なパラダイムとして登場した。
本稿では,Met-In-The-MiddleをベースとしたMITAを提案する。
論文 参考訳(メタデータ) (2024-10-12T07:02:33Z) - ASFT: Aligned Supervised Fine-Tuning through Absolute Likelihood [14.512464277772194]
Aligned Supervised Fine-Tuning (ASFT)は、大規模言語モデルとペアワイズデータセットの整合性を改善する効果的なアプローチである。
ASFTは、DPO損失関数が人間の不適切なデータを生成する確率を減少させる問題を緩和する。
大規模な実験により、ASFTは効果的なアライメントアプローチであり、既存の手法より一貫して優れていることが示された。
論文 参考訳(メタデータ) (2024-09-14T11:39:13Z) - A Semantic-based Layer Freezing Approach to Efficient Fine-Tuning of Language Models [32.178931149612644]
下流のデータやタスクにモデルを適応させるには、微調整言語モデル(LM)が不可欠である。
パラメータ効率の微調整(PEFT)のような既存の作業は、しばしば微細化のためのthithowに焦点を当てるが、微細化のためのtextitwhereの問題を無視している。
論文 参考訳(メタデータ) (2024-06-17T17:13:08Z) - Self-Augmented Preference Optimization: Off-Policy Paradigms for Language Model Alignment [104.18002641195442]
既存のペアデータを必要としない、効果的でスケーラブルなトレーニングパラダイムである自己拡張型優先度最適化(SAPO)を導入する。
負の反応を自律的に生成するセルフプレイの概念に基づいて、我々はさらに、データ探索とエクスプロイトを強化するために、非政治的な学習パイプラインを組み込む。
論文 参考訳(メタデータ) (2024-05-31T14:21:04Z) - AutoFT: Learning an Objective for Robust Fine-Tuning [60.641186718253735]
ファンデーションモデルは、微調整によって下流タスクに適応できるリッチな表現をエンコードする。
手作り正則化技術を用いた頑健な微調整への最近のアプローチ
我々は、堅牢な微調整のためのデータ駆動型アプローチであるAutoFTを提案する。
論文 参考訳(メタデータ) (2024-01-18T18:58:49Z) - Empirical Analysis of Efficient Fine-Tuning Methods for Large
Pre-Trained Language Models [4.096453902709292]
BitFitとアダプタモジュールは、標準のフルモデルファインチューニングと比較される。
BitFitアプローチは、さまざまなトレーニングデータにわたる完全な微調整パフォーマンスと一致します。
アダプタモジュールは、デフォルトモデルよりも一貫性のないゲインを持つ、高い可変性を示す。
論文 参考訳(メタデータ) (2024-01-08T17:44:43Z) - Ahead-of-Time P-Tuning [0.2538209532048867]
Ahead-of-Time (AoT) P-Tuningは、事前学習言語モデル(LM)のためのパラメータ効率の良い微調整法である
我々は,RoBERTaモデルとDeBERTaモデルを用いて,GLUEおよびSuperGLUEベンチマークデータセットのAoT P-Tuningを評価する。
提案手法は, 1 つのバックボーン LM を用いてマルチタスクの推論を可能にする。
論文 参考訳(メタデータ) (2023-05-18T09:24:53Z) - Strong Baselines for Parameter Efficient Few-Shot Fine-tuning [50.83426196335385]
FSC (Few-shot Classification) は、事前訓練(メタトレーニング)フェーズの後にクラス毎にいくつかの例を与えられた新しいクラスを学習する。
近年の研究では、新しいテストクラスで事前訓練された視覚変換器(ViT)を微調整することが、FSCにとって強力なアプローチであることが示されている。
しかし、微調整のViTは、時間、計算、ストレージに費用がかかる。
これにより、Transformerのパラメータのごく一部だけを微調整するPEFT法が考案された。
論文 参考訳(メタデータ) (2023-04-04T16:14:39Z) - Model ensemble instead of prompt fusion: a sample-specific knowledge
transfer method for few-shot prompt tuning [85.55727213502402]
我々は、ソースタスクのソフトプロンプトから知識を伝達することで、プロンプトチューニングにおける数ショットのパフォーマンスを改善することに集中する。
我々はソースモデル(SESoM)のサンプル固有アンサンブルを提案する。
SESoMは、ソースモデルが出力されるときに、ターゲットの各サンプルに対するソースモデルのコントリビューションを個別に調整することを学ぶ。
論文 参考訳(メタデータ) (2022-10-23T01:33:16Z) - Robust Optimal Transport with Applications in Generative Modeling and
Domain Adaptation [120.69747175899421]
ワッサーシュタインのような最適輸送(OT)距離は、GANやドメイン適応のようないくつかの領域で使用されている。
本稿では,現代のディープラーニングアプリケーションに適用可能な,ロバストなOT最適化の計算効率のよい2つの形式を提案する。
提案手法では, ノイズの多いデータセット上で, 外部分布で劣化したGANモデルをトレーニングすることができる。
論文 参考訳(メタデータ) (2020-10-12T17:13:40Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。