Adversarial Training via Adaptive Knowledge Amalgamation of an Ensemble of Teachers
- URL: http://arxiv.org/abs/2405.13324v1
- Date: Wed, 22 May 2024 03:47:55 GMT
- Title: Adversarial Training via Adaptive Knowledge Amalgamation of an Ensemble of Teachers
- Authors: Shayan Mohajer Hamidi, Linfeng Ye,
- Abstract summary: Adversarial training (AT) is a popular method for training robust deep neural networks (DNNs) against adversarial attacks.
This paper introduces adversarial training via adaptive knowledge amalgamation of an ensemble of teachers (AT-AKA)
In particular, we generate a diverse set of adversarial samples as the inputs to an ensemble of teachers; then, we adaptivelyate the logtis of these teachers to train a generalized-robust student.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Adversarial training (AT) is a popular method for training robust deep neural networks (DNNs) against adversarial attacks. Yet, AT suffers from two shortcomings: (i) the robustness of DNNs trained by AT is highly intertwined with the size of the DNNs, posing challenges in achieving robustness in smaller models; and (ii) the adversarial samples employed during the AT process exhibit poor generalization, leaving DNNs vulnerable to unforeseen attack types. To address these dual challenges, this paper introduces adversarial training via adaptive knowledge amalgamation of an ensemble of teachers (AT-AKA). In particular, we generate a diverse set of adversarial samples as the inputs to an ensemble of teachers; and then, we adaptively amalgamate the logtis of these teachers to train a generalized-robust student. Through comprehensive experiments, we illustrate the superior efficacy of AT-AKA over existing AT methods and adversarial robustness distillation techniques against cutting-edge attacks, including AutoAttack.
Related papers
- Latent Boundary-guided Adversarial Training [61.43040235982727]
Adrial training is proved to be the most effective strategy that injects adversarial examples into model training.
We propose a novel adversarial training framework called LAtent bounDary-guided aDvErsarial tRaining.
arXiv Detail & Related papers (2022-06-08T07:40:55Z) - Alleviating Robust Overfitting of Adversarial Training With Consistency
Regularization [9.686724616328874]
Adversarial training (AT) has proven to be one of the most effective ways to defend Deep Neural Networks (DNNs) against adversarial attacks.
robustness will drop sharply at a certain stage, always exists during AT.
consistency regularization, a popular technique in semi-supervised learning, has a similar goal as AT and can be used to alleviate robust overfitting.
arXiv Detail & Related papers (2022-05-24T03:18:43Z) - Enhancing Adversarial Training with Feature Separability [52.39305978984573]
We introduce a new concept of adversarial training graph (ATG) with which the proposed adversarial training with feature separability (ATFS) enables to boost the intra-class feature similarity and increase inter-class feature variance.
Through comprehensive experiments, we demonstrate that the proposed ATFS framework significantly improves both clean and robust performance.
arXiv Detail & Related papers (2022-05-02T04:04:23Z) - Exploring Adversarially Robust Training for Unsupervised Domain
Adaptation [71.94264837503135]
Unsupervised Domain Adaptation (UDA) methods aim to transfer knowledge from a labeled source domain to an unlabeled target domain.
This paper explores how to enhance the unlabeled data robustness via AT while learning domain-invariant features for UDA.
We propose a novel Adversarially Robust Training method for UDA accordingly, referred to as ARTUDA.
arXiv Detail & Related papers (2022-02-18T17:05:19Z) - Universal Adversarial Training with Class-Wise Perturbations [78.05383266222285]
adversarial training is the most widely used method for defending against adversarial attacks.
In this work, we find that a UAP does not attack all classes equally.
We improve the SOTA UAT by proposing to utilize class-wise UAPs during adversarial training.
arXiv Detail & Related papers (2021-04-07T09:05:49Z) - Combating Adversaries with Anti-Adversaries [118.70141983415445]
In particular, our layer generates an input perturbation in the opposite direction of the adversarial one.
We verify the effectiveness of our approach by combining our layer with both nominally and robustly trained models.
Our anti-adversary layer significantly enhances model robustness while coming at no cost on clean accuracy.
arXiv Detail & Related papers (2021-03-26T09:36:59Z) - Boosting Adversarial Training with Hypersphere Embedding [53.75693100495097]
Adversarial training is one of the most effective defenses against adversarial attacks for deep learning models.
In this work, we advocate incorporating the hypersphere embedding mechanism into the AT procedure.
We validate our methods under a wide range of adversarial attacks on the CIFAR-10 and ImageNet datasets.
arXiv Detail & Related papers (2020-02-20T08:42:29Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.