論文の概要: Input Guided Multiple Deconstruction Single Reconstruction neural network models for Matrix Factorization
- arxiv url: http://arxiv.org/abs/2405.13449v1
- Date: Wed, 22 May 2024 08:41:32 GMT
- ステータス: 処理完了
- システム内更新日: 2024-05-25 00:55:07.020783
- Title: Input Guided Multiple Deconstruction Single Reconstruction neural network models for Matrix Factorization
- Title(参考訳): 行列分解のための入力誘導多重デコンストラクション単一再構成ニューラルネットワークモデル
- Authors: Prasun Dutta, Rajat K. De,
- Abstract要約: 本稿では,非負行列因子化(NMF)の概念に基づく2つのモデルを開発する。
彼らは、一対の係数行列を定め、その低階近似を発見して高次元データを扱うことを目指している。
次元削減の必要性を正当化する原データよりも低次元埋め込みの方が優れていることが確認された。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: Referring back to the original text in the course of hierarchical learning is a common human trait that ensures the right direction of learning. The models developed based on the concept of Non-negative Matrix Factorization (NMF), in this paper are inspired by this idea. They aim to deal with high-dimensional data by discovering its low rank approximation by determining a unique pair of factor matrices. The model, named Input Guided Multiple Deconstruction Single Reconstruction neural network for Non-negative Matrix Factorization (IG-MDSR-NMF), ensures the non-negativity constraints of both factors. Whereas Input Guided Multiple Deconstruction Single Reconstruction neural network for Relaxed Non-negative Matrix Factorization (IG-MDSR-RNMF) introduces a novel idea of factorization with only the basis matrix adhering to the non-negativity criteria. This relaxed version helps the model to learn more enriched low dimensional embedding of the original data matrix. The competency of preserving the local structure of data in its low rank embedding produced by both the models has been appropriately verified. The superiority of low dimensional embedding over that of the original data justifying the need for dimension reduction has been established. The primacy of both the models has also been validated by comparing their performances separately with that of nine other established dimension reduction algorithms on five popular datasets. Moreover, computational complexity of the models and convergence analysis have also been presented testifying to the supremacy of the models.
- Abstract(参考訳): 階層学習の過程で原文を参照することは、学習の正しい方向を保証する共通の人間の特性である。
本稿では,非負行列因子化(NMF)の概念に基づくモデルについて述べる。
彼らは、一対の係数行列を定め、その低階近似を発見して高次元データを扱うことを目指している。
このモデルは、非負行列因子分解(IG-MDSR-NMF)のための入力誘導多重デコンストラクション単一再構成ニューラルネットワークと呼ばれ、両因子の非負性制約を保証する。
Relaxed Non- negative Matrix Factorization (IG-MDSR-RNMF) のための入力誘導多重デコンストラクション単一再構成ニューラルネットワークは、非負性基準に固執する基底行列のみによる因子化の新たな考え方を導入する。
この緩和されたバージョンは、モデルが元のデータマトリックスのよりリッチな低次元埋め込みを学ぶのに役立つ。
両モデルが生成する低ランク埋め込みにおけるデータの局所的構造を保存する能力は適切に検証されている。
次元削減の必要性を正当化する原データよりも低次元埋め込みの方が優れていることが確認された。
両方のモデルの優位性はまた、5つの一般的なデータセット上の9つの確立された次元削減アルゴリズムと、それらの性能を別々に比較することによって検証されている。
さらに、モデルの計算複雑性と収束解析も、モデルの優越性を証明している。
関連論文リスト
- Induced Covariance for Causal Discovery in Linear Sparse Structures [55.2480439325792]
因果モデルでは、観測データから変数間の因果関係を解き明かそうとしている。
本稿では,変数が線形に疎結合な関係を示す設定のための新しい因果探索アルゴリズムを提案する。
論文 参考訳(メタデータ) (2024-10-02T04:01:38Z) - Layer-Specific Optimization: Sensitivity Based Convolution Layers Basis Search [0.0]
畳み込み層の重みに対して行列分解を適用する新しい方法を提案する。
この方法の本質は、すべての畳み込みを訓練することではなく、畳み込みのサブセット(基底畳み込み)のみを訓練することであり、残りを基底の線形結合として表現することである。
ResNetファミリとCIFAR-10データセットによるモデル実験では、ベース畳み込みはモデルのサイズを減らすだけでなく、ネットワークの前方および後方通過を加速する。
論文 参考訳(メタデータ) (2024-08-12T09:24:48Z) - The Decimation Scheme for Symmetric Matrix Factorization [0.0]
行列分解(Matrix factorization)は、その広範囲な応用により重要になった推論問題である。
我々はこの広範囲なランク問題について研究し、最近導入した代替の「決定」手順を拡張した。
本稿では,デシメーションを実装し,行列分解を行う基底状態探索に基づく簡単なアルゴリズムを提案する。
論文 参考訳(メタデータ) (2023-07-31T10:53:45Z) - Classification of BCI-EEG based on augmented covariance matrix [0.0]
本稿では,運動画像分類の改善を目的とした自己回帰モデルから抽出した拡張共分散に基づく新しいフレームワークを提案する。
私たちはMOABBフレームワークを使って、いくつかのデータセットといくつかの主題でアプローチを検証します。
論文 参考訳(メタデータ) (2023-02-09T09:04:25Z) - A Novel Maximum-Entropy-Driven Technique for Low-Rank Orthogonal
Nonnegative Matrix Factorization with $\ell_0$-Norm sparsity Constraint [0.0]
データ駆動制御と機械学習では、大きな行列を小さく、低ランクな要素に分解する、という一般的な要件がある。
本稿では,直交非負行列分解(ONMF)問題に対する革新的な解を提案する。
提案手法は,文献と同等あるいは改善された復元誤差を実現する。
論文 参考訳(メタデータ) (2022-10-06T04:30:59Z) - Non-Negative Matrix Factorization with Scale Data Structure Preservation [23.31865419578237]
本稿では,データ表現と次元縮小のために設計された非負行列分解法に属するモデルについて述べる。
この考え方は、NMFコスト関数に、元のデータポイントと変換されたデータポイントのペアの類似度行列のスケール関係を課すペナルティ項を追加することである。
提案したクラスタリングアルゴリズムは,既存のNMFベースのアルゴリズムや,実際のデータセットに適用した場合の多様体学習ベースのアルゴリズムと比較される。
論文 参考訳(メタデータ) (2022-09-22T09:32:18Z) - Graph Polynomial Convolution Models for Node Classification of
Non-Homophilous Graphs [52.52570805621925]
本研究では,高階グラフ畳み込みからの効率的な学習と,ノード分類のための隣接行列から直接学習する。
得られたモデルが新しいグラフと残留スケーリングパラメータをもたらすことを示す。
提案手法は,非親和性パラメータのノード分類における精度の向上を実証する。
論文 参考訳(メタデータ) (2022-09-12T04:46:55Z) - Improving the Reconstruction of Disentangled Representation Learners via Multi-Stage Modeling [54.94763543386523]
現在の自己エンコーダに基づく非絡み合い表現学習法は、(集合体)後部をペナルティ化し、潜伏因子の統計的独立を促進することで、非絡み合いを実現する。
本稿では,不整合因子をペナルティに基づく不整合表現学習法を用いて学習する,新しい多段階モデリング手法を提案する。
次に、低品質な再構成を、欠落した関連潜伏変数をモデル化するために訓練された別の深層生成モデルで改善する。
論文 参考訳(メタデータ) (2020-10-25T18:51:15Z) - Model Fusion with Kullback--Leibler Divergence [58.20269014662046]
異種データセットから学習した後続分布を融合する手法を提案する。
我々のアルゴリズムは、融合モデルと個々のデータセット後部の両方に対する平均場仮定に依存している。
論文 参考訳(メタデータ) (2020-07-13T03:27:45Z) - Provably Efficient Neural Estimation of Structural Equation Model: An
Adversarial Approach [144.21892195917758]
一般化構造方程式モデル(SEM)のクラスにおける推定について検討する。
線形作用素方程式をmin-maxゲームとして定式化し、ニューラルネットワーク(NN)でパラメータ化し、勾配勾配を用いてニューラルネットワークのパラメータを学習する。
提案手法は,サンプル分割を必要とせず,確固とした収束性を持つNNをベースとしたSEMの抽出可能な推定手順を初めて提供する。
論文 参考訳(メタデータ) (2020-07-02T17:55:47Z) - Two-Dimensional Semi-Nonnegative Matrix Factorization for Clustering [50.43424130281065]
TS-NMFと呼ばれる2次元(2次元)データに対する新しい半負行列分解法を提案する。
前処理ステップで2次元データをベクトルに変換することで、データの空間情報に深刻なダメージを与える既存の手法の欠点を克服する。
論文 参考訳(メタデータ) (2020-05-19T05:54:14Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。