Deep linear networks for regression are implicitly regularized towards flat minima
- URL: http://arxiv.org/abs/2405.13456v2
- Date: Mon, 28 Oct 2024 17:10:57 GMT
- Title: Deep linear networks for regression are implicitly regularized towards flat minima
- Authors: Pierre Marion, Lénaïc Chizat,
- Abstract summary: Minimizers can have arbitrarily large sharpness, but not an arbitrarily small one.
We show a lower bound on the sharpness of minimizers, which grows linearly with depth.
We show an implicit regularization towards flat minima: the sharpness of the minimizer is no more than a constant times the lower bound.
- Score: 4.806579822134391
- License:
- Abstract: The largest eigenvalue of the Hessian, or sharpness, of neural networks is a key quantity to understand their optimization dynamics. In this paper, we study the sharpness of deep linear networks for univariate regression. Minimizers can have arbitrarily large sharpness, but not an arbitrarily small one. Indeed, we show a lower bound on the sharpness of minimizers, which grows linearly with depth. We then study the properties of the minimizer found by gradient flow, which is the limit of gradient descent with vanishing learning rate. We show an implicit regularization towards flat minima: the sharpness of the minimizer is no more than a constant times the lower bound. The constant depends on the condition number of the data covariance matrix, but not on width or depth. This result is proven both for a small-scale initialization and a residual initialization. Results of independent interest are shown in both cases. For small-scale initialization, we show that the learned weight matrices are approximately rank-one and that their singular vectors align. For residual initialization, convergence of the gradient flow for a Gaussian initialization of the residual network is proven. Numerical experiments illustrate our results and connect them to gradient descent with non-vanishing learning rate.
Related papers
- The Implicit Bias of Minima Stability in Multivariate Shallow ReLU
Networks [53.95175206863992]
We study the type of solutions to which gradient descent converges when used to train a single hidden-layer multivariate ReLU network with the quadratic loss.
We prove that although shallow ReLU networks are universal approximators, stable shallow networks are not.
arXiv Detail & Related papers (2023-06-30T09:17:39Z) - The Inductive Bias of Flatness Regularization for Deep Matrix
Factorization [58.851514333119255]
This work takes the first step toward understanding the inductive bias of the minimum trace of the Hessian solutions in deep linear networks.
We show that for all depth greater than one, with the standard Isometry Property (RIP) on the measurements, minimizing the trace of Hessian is approximately equivalent to minimizing the Schatten 1-norm of the corresponding end-to-end matrix parameters.
arXiv Detail & Related papers (2023-06-22T23:14:57Z) - Implicit Bias in Leaky ReLU Networks Trained on High-Dimensional Data [63.34506218832164]
In this work, we investigate the implicit bias of gradient flow and gradient descent in two-layer fully-connected neural networks with ReLU activations.
For gradient flow, we leverage recent work on the implicit bias for homogeneous neural networks to show that leakyally, gradient flow produces a neural network with rank at most two.
For gradient descent, provided the random variance is small enough, we show that a single step of gradient descent suffices to drastically reduce the rank of the network, and that the rank remains small throughout training.
arXiv Detail & Related papers (2022-10-13T15:09:54Z) - Slimmable Networks for Contrastive Self-supervised Learning [69.9454691873866]
Self-supervised learning makes significant progress in pre-training large models, but struggles with small models.
We introduce another one-stage solution to obtain pre-trained small models without the need for extra teachers.
A slimmable network consists of a full network and several weight-sharing sub-networks, which can be pre-trained once to obtain various networks.
arXiv Detail & Related papers (2022-09-30T15:15:05Z) - Implicit Regularization Towards Rank Minimization in ReLU Networks [34.41953136999683]
We study the conjectured relationship between the implicit regularization in neural networks and rank minimization.
We focus on nonlinear ReLU networks, providing several new positive and negative results.
arXiv Detail & Related papers (2022-01-30T09:15:44Z) - Continuous vs. Discrete Optimization of Deep Neural Networks [15.508460240818575]
We show that over deep neural networks with homogeneous activations, gradient flow trajectories enjoy favorable curvature.
This finding allows us to translate an analysis of gradient flow over deep linear neural networks into a guarantee that gradient descent efficiently converges to global minimum.
We hypothesize that the theory of gradient flows will be central to unraveling mysteries behind deep learning.
arXiv Detail & Related papers (2021-07-14T10:59:57Z) - Towards Resolving the Implicit Bias of Gradient Descent for Matrix
Factorization: Greedy Low-Rank Learning [19.82453283089643]
Matrix factorization is a simple and natural test-bed to investigate the implicit regularization of descent gradient.
We show that for depth-2 matrix factorization, flow with infinitesimal initialization is mathematically equivalent to a simple rank minimization algorithm.
arXiv Detail & Related papers (2020-12-17T18:57:01Z) - Implicit Bias in Deep Linear Classification: Initialization Scale vs
Training Accuracy [71.25689267025244]
We show how the transition is controlled by the relationship between the scale and how accurately we minimize the training loss.
Our results indicate that some limit behaviors of gradient descent only kick in at ridiculous training accuracies.
arXiv Detail & Related papers (2020-07-13T23:49:53Z) - Unique Properties of Flat Minima in Deep Networks [44.21198403467404]
We characterize the flat minima in linear neural networks trained with a quadratic loss.
Experiments indicate that these properties are characteristic of both linear and nonlinear models trained in practice.
arXiv Detail & Related papers (2020-02-11T22:01:19Z) - A Diffusion Theory For Deep Learning Dynamics: Stochastic Gradient
Descent Exponentially Favors Flat Minima [91.11332770406007]
We show that Gradient Descent (SGD) favors flat minima exponentially more than sharp minima.
We also reveal that either a small learning rate or large-batch training requires exponentially many iterations to escape from minima.
arXiv Detail & Related papers (2020-02-10T02:04:49Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.