Beyond Trend and Periodicity: Guiding Time Series Forecasting with Textual Cues
- URL: http://arxiv.org/abs/2405.13522v2
- Date: Fri, 24 May 2024 15:10:27 GMT
- Title: Beyond Trend and Periodicity: Guiding Time Series Forecasting with Textual Cues
- Authors: Zhijian Xu, Yuxuan Bian, Jianyuan Zhong, Xiangyu Wen, Qiang Xu,
- Abstract summary: This work introduces a novel Text-Guided Time Series Forecasting (TGTSF) task.
By integrating textual cues, such as channel descriptions and dynamic news, TGTSF addresses the critical limitations of traditional methods.
We propose TGForecaster, a robust baseline model that fuses textual cues and time series data using cross-attention mechanisms.
- Score: 9.053923035530152
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: This work introduces a novel Text-Guided Time Series Forecasting (TGTSF) task. By integrating textual cues, such as channel descriptions and dynamic news, TGTSF addresses the critical limitations of traditional methods that rely purely on historical data. To support this task, we propose TGForecaster, a robust baseline model that fuses textual cues and time series data using cross-attention mechanisms. We then present four meticulously curated benchmark datasets to validate the proposed framework, ranging from simple periodic data to complex, event-driven fluctuations. Our comprehensive evaluations demonstrate that TGForecaster consistently achieves state-of-the-art performance, highlighting the transformative potential of incorporating textual information into time series forecasting. This work not only pioneers a novel forecasting task but also establishes a new benchmark for future research, driving advancements in multimodal data integration for time series models.
Related papers
- Beyond Patterns: Harnessing Causal Logic for Autonomous Driving Trajectory Prediction [10.21659221112514]
We introduce a novel trajectory prediction framework that leverages causal inference to enhance predictive robustness, generalization, and accuracy.<n>Our findings highlight the potential of causal reasoning to transform trajectory prediction, paving the way for robust autonomous driving systems.
arXiv Detail & Related papers (2025-05-11T05:56:07Z) - Topology-Aware Conformal Prediction for Stream Networks [54.505880918607296]
We propose Spatio-Temporal Adaptive Conformal Inference (textttCISTA), a novel framework that integrates network topology and temporal dynamics into the conformal prediction framework.<n>Our results show that textttCISTA effectively balances prediction efficiency and coverage, outperforming existing conformal prediction methods for stream networks.
arXiv Detail & Related papers (2025-03-06T21:21:15Z) - TimesBERT: A BERT-Style Foundation Model for Time Series Understanding [72.64824086839631]
GPT-style models have been positioned as foundation models for time series forecasting.
BERT-style architecture has not been fully unlocked for time series understanding.
We design TimesBERT to learn generic representations of time series.
Our model is pre-trained on 260 billion time points across diverse domains.
arXiv Detail & Related papers (2025-02-28T17:14:44Z) - TimeCAP: Learning to Contextualize, Augment, and Predict Time Series Events with Large Language Model Agents [52.13094810313054]
TimeCAP is a time-series processing framework that creatively employs Large Language Models (LLMs) as contextualizers of time series data.
TimeCAP incorporates two independent LLM agents: one generates a textual summary capturing the context of the time series, while the other uses this enriched summary to make more informed predictions.
Experimental results on real-world datasets demonstrate that TimeCAP outperforms state-of-the-art methods for time series event prediction.
arXiv Detail & Related papers (2025-02-17T04:17:27Z) - Language in the Flow of Time: Time-Series-Paired Texts Weaved into a Unified Temporal Narrative [65.84249211767921]
Texts as Time Series (TaTS) considers the time-series-paired texts to be auxiliary variables of the time series.
TaTS can be plugged into any existing numerical-only time series models and enable them to handle time series data with paired texts effectively.
arXiv Detail & Related papers (2025-02-13T03:43:27Z) - LAST SToP For Modeling Asynchronous Time Series [19.401463051705377]
We present a novel prompt design for Large Language Models (LLMs) tailored to Asynchronous Time Series.
Our approach effectively utilizes the rich natural language of event descriptions, allowing LLMs to benefit from their broad world knowledge for reasoning across different domains and tasks.
We further introduce Soft Prompting, a novel prompt-tuning mechanism that significantly improves model performance, outperforming existing fine-tuning methods such as QLoRA.
arXiv Detail & Related papers (2025-02-04T01:42:45Z) - Unveiling the Potential of Text in High-Dimensional Time Series Forecasting [12.707274099874384]
We propose a novel framework that integrates time series models with Large Language Models.
Inspired by multimodal models, our method combines time series and textual data in the dual-tower structure.
Experiments demonstrate that incorporating text enhances high-dimensional time series forecasting performance.
arXiv Detail & Related papers (2025-01-13T04:10:45Z) - Text2Freq: Learning Series Patterns from Text via Frequency Domain [8.922661807801227]
Text2Freq is a cross-modality model that integrates text and time series data via the frequency domain.
Our experiments on paired datasets of real-world stock prices and synthetic texts show that Text2Freq achieves state-of-the-art performance.
arXiv Detail & Related papers (2024-11-01T16:11:02Z) - On conditional diffusion models for PDE simulations [53.01911265639582]
We study score-based diffusion models for forecasting and assimilation of sparse observations.
We propose an autoregressive sampling approach that significantly improves performance in forecasting.
We also propose a new training strategy for conditional score-based models that achieves stable performance over a range of history lengths.
arXiv Detail & Related papers (2024-10-21T18:31:04Z) - Metadata Matters for Time Series: Informative Forecasting with Transformers [70.38241681764738]
We propose a Metadata-informed Time Series Transformer (MetaTST) for time series forecasting.
To tackle the unstructured nature of metadata, MetaTST formalizes them into natural languages by pre-designed templates.
A Transformer encoder is employed to communicate series and metadata tokens, which can extend series representations by metadata information.
arXiv Detail & Related papers (2024-10-04T11:37:55Z) - Understanding Different Design Choices in Training Large Time Series Models [71.20102277299445]
Training Large Time Series Models (LTSMs) on heterogeneous time series data poses unique challenges.
We propose emphtime series prompt, a novel statistical prompting strategy tailored to time series data.
We introduce textttLTSM-bundle, which bundles the best design choices we have identified.
arXiv Detail & Related papers (2024-06-20T07:09:19Z) - From Conformal Predictions to Confidence Regions [1.4272411349249627]
We introduce CCR, which employs a combination of conformal prediction intervals for the model outputs to establish confidence regions for model parameters.
We present coverage guarantees under minimal assumptions on noise and that is valid in finite sample regime.
Our approach is applicable to both split conformal predictions and black-box methodologies including full or cross-conformal approaches.
arXiv Detail & Related papers (2024-05-28T21:33:12Z) - LaT-PFN: A Joint Embedding Predictive Architecture for In-context Time-series Forecasting [0.0]
We introduce LatentTimePFN, a foundational Time Series model with a strong embedding space that enables zero-shot forecasting.
We perform in-context learning in latent space utilizing a novel integration of the Prior-data Fitted Networks (PFN) and Joint Embedding Predictive Architecture (JEPA) frameworks.
arXiv Detail & Related papers (2024-05-16T13:44:56Z) - Chronos: Learning the Language of Time Series [79.38691251254173]
Chronos is a framework for pretrained probabilistic time series models.
We show that Chronos models can leverage time series data from diverse domains to improve zero-shot accuracy on unseen forecasting tasks.
arXiv Detail & Related papers (2024-03-12T16:53:54Z) - Weather Prediction with Diffusion Guided by Realistic Forecast Processes [49.07556359513563]
We introduce a novel method that applies diffusion models (DM) for weather forecasting.
Our method can achieve both direct and iterative forecasting with the same modeling framework.
The flexibility and controllability of our model empowers a more trustworthy DL system for the general weather community.
arXiv Detail & Related papers (2024-02-06T21:28:42Z) - Unified Training of Universal Time Series Forecasting Transformers [104.56318980466742]
We present a Masked-based Universal Time Series Forecasting Transformer (Moirai)
Moirai is trained on our newly introduced Large-scale Open Time Series Archive (LOTSA) featuring over 27B observations across nine domains.
Moirai achieves competitive or superior performance as a zero-shot forecaster when compared to full-shot models.
arXiv Detail & Related papers (2024-02-04T20:00:45Z) - TEMPO: Prompt-based Generative Pre-trained Transformer for Time Series Forecasting [24.834846119163885]
We propose a novel framework, TEMPO, that can effectively learn time series representations.
TEMPO expands the capability for dynamically modeling real-world temporal phenomena from data within diverse domains.
arXiv Detail & Related papers (2023-10-08T00:02:25Z) - Time-LLM: Time Series Forecasting by Reprogramming Large Language Models [110.20279343734548]
Time series forecasting holds significant importance in many real-world dynamic systems.
We present Time-LLM, a reprogramming framework to repurpose large language models for time series forecasting.
Time-LLM is a powerful time series learner that outperforms state-of-the-art, specialized forecasting models.
arXiv Detail & Related papers (2023-10-03T01:31:25Z) - Causality-oriented robustness: exploiting general noise interventions [4.64479351797195]
In this paper, we focus on causality-oriented robustness and propose Distributional Robustness via Invariant Gradients (DRIG)<n>DRIG exploits general noise interventions in training data for robust predictions against unseen interventions.<n>We show that our framework includes anchor regression as a special case, and that it yields prediction models that protect against more diverse perturbations.
arXiv Detail & Related papers (2023-07-18T16:22:50Z) - A Closer Look at the Intervention Procedure of Concept Bottleneck Models [18.222350428973343]
Concept bottleneck models (CBMs) are a class of interpretable neural network models that predict the target response of a given input based on its high-level concepts.
CBMs enable domain experts to intervene on the predicted concepts and rectify any mistakes at test time, so that more accurate task predictions can be made at the end.
We develop various ways of selecting intervening concepts to improve the intervention effectiveness and conduct an array of in-depth analyses as to how they evolve under different circumstances.
arXiv Detail & Related papers (2023-02-28T02:37:24Z) - Towards Generating Real-World Time Series Data [52.51620668470388]
We propose a novel generative framework for time series data generation - RTSGAN.
RTSGAN learns an encoder-decoder module which provides a mapping between a time series instance and a fixed-dimension latent vector.
To generate time series with missing values, we further equip RTSGAN with an observation embedding layer and a decide-and-generate decoder.
arXiv Detail & Related papers (2021-11-16T11:31:37Z) - When in Doubt: Neural Non-Parametric Uncertainty Quantification for
Epidemic Forecasting [70.54920804222031]
Most existing forecasting models disregard uncertainty quantification, resulting in mis-calibrated predictions.
Recent works in deep neural models for uncertainty-aware time-series forecasting also have several limitations.
We model the forecasting task as a probabilistic generative process and propose a functional neural process model called EPIFNP.
arXiv Detail & Related papers (2021-06-07T18:31:47Z) - Learning Interpretable Deep State Space Model for Probabilistic Time
Series Forecasting [98.57851612518758]
Probabilistic time series forecasting involves estimating the distribution of future based on its history.
We propose a deep state space model for probabilistic time series forecasting whereby the non-linear emission model and transition model are parameterized by networks.
We show in experiments that our model produces accurate and sharp probabilistic forecasts.
arXiv Detail & Related papers (2021-01-31T06:49:33Z) - Estimating the Effects of Continuous-valued Interventions using
Generative Adversarial Networks [103.14809802212535]
We build on the generative adversarial networks (GANs) framework to address the problem of estimating the effect of continuous-valued interventions.
Our model, SCIGAN, is flexible and capable of simultaneously estimating counterfactual outcomes for several different continuous interventions.
To address the challenges presented by shifting to continuous interventions, we propose a novel architecture for our discriminator.
arXiv Detail & Related papers (2020-02-27T18:46:21Z) - Deep Transformer Models for Time Series Forecasting: The Influenza
Prevalence Case [2.997238772148965]
Time series data are prevalent in many scientific and engineering disciplines.
We present a new approach to time series forecasting using Transformer-based machine learning models.
We show that the forecasting results produced by our approach are favorably comparable to the state-of-the-art.
arXiv Detail & Related papers (2020-01-23T00:22:22Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.