End-to-End Real-World Polyphonic Piano Audio-to-Score Transcription with Hierarchical Decoding
- URL: http://arxiv.org/abs/2405.13527v1
- Date: Wed, 22 May 2024 10:52:04 GMT
- Title: End-to-End Real-World Polyphonic Piano Audio-to-Score Transcription with Hierarchical Decoding
- Authors: Wei Zeng, Xian He, Ye Wang,
- Abstract summary: Existing end-to-end piano A2S systems have been trained and evaluated with only synthetic data.
We propose a sequence-to-sequence (Seq2Seq) model with a hierarchical decoder that aligns with the hierarchical structure of musical scores.
We propose a two-stage training scheme, which involves pre-training the model using an expressive performance rendering system on synthetic audio, followed by fine-tuning the model using recordings of human performance.
- Score: 4.604877755214193
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Piano audio-to-score transcription (A2S) is an important yet underexplored task with extensive applications for music composition, practice, and analysis. However, existing end-to-end piano A2S systems faced difficulties in retrieving bar-level information such as key and time signatures, and have been trained and evaluated with only synthetic data. To address these limitations, we propose a sequence-to-sequence (Seq2Seq) model with a hierarchical decoder that aligns with the hierarchical structure of musical scores, enabling the transcription of score information at both the bar and note levels by multi-task learning. To bridge the gap between synthetic data and recordings of human performance, we propose a two-stage training scheme, which involves pre-training the model using an expressive performance rendering (EPR) system on synthetic audio, followed by fine-tuning the model using recordings of human performance. To preserve the voicing structure for score reconstruction, we propose a pre-processing method for **Kern scores in scenarios with an unconstrained number of voices. Experimental results support the effectiveness of our proposed approaches, in terms of both transcription performance on synthetic audio data in comparison to the current state-of-the-art, and the first experiment on human recordings.
Related papers
- Automatic Estimation of Singing Voice Musical Dynamics [9.343063100314687]
We propose a methodology for dataset curation.
We compile a dataset comprising 509 musical dynamics annotated singing voice performances, aligned with 163 score files.
We train a CNN model with varying window sizes to evaluate the effectiveness of estimating musical dynamics.
We conclude through our experiments that bark-scale based features outperform log-Mel-features for the task of singing voice dynamics prediction.
arXiv Detail & Related papers (2024-10-27T18:15:18Z) - End-to-End Full-Page Optical Music Recognition for Pianoform Sheet Music [12.779526750915707]
We present the first truly end-to-end approach for page-level Optical Music Recognition.
Our system processes an entire music score page and outputs a complete transcription in a music encoding format.
The results demonstrate that our system not only successfully transcribes full-page music scores but also outperforms the commercial tool in both zero-shot settings and after fine-tuning with the target domain.
arXiv Detail & Related papers (2024-05-20T15:21:48Z) - Advancing Natural-Language Based Audio Retrieval with PaSST and Large
Audio-Caption Data Sets [6.617487928813374]
We present a text-to-audio-retrieval system based on pre-trained text and spectrogram transformers.
Our system ranked first in the 2023's DCASE Challenge, and it outperforms the current state of the art on the ClothoV2 benchmark by 5.6 pp. mAP@10.
arXiv Detail & Related papers (2023-08-08T13:46:55Z) - Make-A-Voice: Unified Voice Synthesis With Discrete Representation [77.3998611565557]
Make-A-Voice is a unified framework for synthesizing and manipulating voice signals from discrete representations.
We show that Make-A-Voice exhibits superior audio quality and style similarity compared with competitive baseline models.
arXiv Detail & Related papers (2023-05-30T17:59:26Z) - RMSSinger: Realistic-Music-Score based Singing Voice Synthesis [56.51475521778443]
RMS-SVS aims to generate high-quality singing voices given realistic music scores with different note types.
We propose RMSSinger, the first RMS-SVS method, which takes realistic music scores as input.
In RMSSinger, we introduce word-level modeling to avoid the time-consuming phoneme duration annotation and the complicated phoneme-level mel-note alignment.
arXiv Detail & Related papers (2023-05-18T03:57:51Z) - Anomalous Sound Detection using Audio Representation with Machine ID
based Contrastive Learning Pretraining [52.191658157204856]
This paper uses contrastive learning to refine audio representations for each machine ID, rather than for each audio sample.
The proposed two-stage method uses contrastive learning to pretrain the audio representation model.
Experiments show that our method outperforms the state-of-the-art methods using contrastive learning or self-supervised classification.
arXiv Detail & Related papers (2023-04-07T11:08:31Z) - Exploring the Efficacy of Pre-trained Checkpoints in Text-to-Music
Generation Task [86.72661027591394]
We generate complete and semantically consistent symbolic music scores from text descriptions.
We explore the efficacy of using publicly available checkpoints for natural language processing in the task of text-to-music generation.
Our experimental results show that the improvement from using pre-trained checkpoints is statistically significant in terms of BLEU score and edit distance similarity.
arXiv Detail & Related papers (2022-11-21T07:19:17Z) - Fully Automated End-to-End Fake Audio Detection [57.78459588263812]
This paper proposes a fully automated end-toend fake audio detection method.
We first use wav2vec pre-trained model to obtain a high-level representation of the speech.
For the network structure, we use a modified version of the differentiable architecture search (DARTS) named light-DARTS.
arXiv Detail & Related papers (2022-08-20T06:46:55Z) - Deep Performer: Score-to-Audio Music Performance Synthesis [30.95307878579825]
Deep Performer is a novel system for score-to-audio music performance synthesis.
Unlike speech, music often contains polyphony and long notes.
We show that our proposed model can synthesize music with clear polyphony and harmonic structures.
arXiv Detail & Related papers (2022-02-12T10:36:52Z) - DiffSinger: Diffusion Acoustic Model for Singing Voice Synthesis [53.19363127760314]
DiffSinger is a parameterized Markov chain which iteratively converts the noise into mel-spectrogram conditioned on the music score.
The evaluations conducted on the Chinese singing dataset demonstrate that DiffSinger outperforms state-of-the-art SVS work with a notable margin.
arXiv Detail & Related papers (2021-05-06T05:21:42Z) - Structure-Aware Audio-to-Score Alignment using Progressively Dilated
Convolutional Neural Networks [8.669338893753885]
The identification of structural differences between a music performance and the score is a challenging yet integral step of audio-to-score alignment.
We present a novel method to detect such differences using progressively dilated convolutional neural networks.
arXiv Detail & Related papers (2021-01-31T05:14:58Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.