Structure-Aware Audio-to-Score Alignment using Progressively Dilated
Convolutional Neural Networks
- URL: http://arxiv.org/abs/2102.00382v1
- Date: Sun, 31 Jan 2021 05:14:58 GMT
- Title: Structure-Aware Audio-to-Score Alignment using Progressively Dilated
Convolutional Neural Networks
- Authors: Ruchit Agrawal, Daniel Wolff, Simon Dixon
- Abstract summary: The identification of structural differences between a music performance and the score is a challenging yet integral step of audio-to-score alignment.
We present a novel method to detect such differences using progressively dilated convolutional neural networks.
- Score: 8.669338893753885
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: The identification of structural differences between a music performance and
the score is a challenging yet integral step of audio-to-score alignment, an
important subtask of music information retrieval. We present a novel method to
detect such differences between the score and performance for a given piece of
music using progressively dilated convolutional neural networks. Our method
incorporates varying dilation rates at different layers to capture both
short-term and long-term context, and can be employed successfully in the
presence of limited annotated data. We conduct experiments on audio recordings
of real performances that differ structurally from the score, and our results
demonstrate that our models outperform standard methods for structure-aware
audio-to-score alignment.
Related papers
- End-to-End Real-World Polyphonic Piano Audio-to-Score Transcription with Hierarchical Decoding [4.604877755214193]
Existing end-to-end piano A2S systems have been trained and evaluated with only synthetic data.
We propose a sequence-to-sequence (Seq2Seq) model with a hierarchical decoder that aligns with the hierarchical structure of musical scores.
We propose a two-stage training scheme, which involves pre-training the model using an expressive performance rendering system on synthetic audio, followed by fine-tuning the model using recordings of human performance.
arXiv Detail & Related papers (2024-05-22T10:52:04Z) - Exploring the Efficacy of Pre-trained Checkpoints in Text-to-Music
Generation Task [86.72661027591394]
We generate complete and semantically consistent symbolic music scores from text descriptions.
We explore the efficacy of using publicly available checkpoints for natural language processing in the task of text-to-music generation.
Our experimental results show that the improvement from using pre-trained checkpoints is statistically significant in terms of BLEU score and edit distance similarity.
arXiv Detail & Related papers (2022-11-21T07:19:17Z) - Towards Context-Aware Neural Performance-Score Synchronisation [2.0305676256390934]
Music synchronisation provides a way to navigate among multiple representations of music in a unified manner.
Traditional synchronisation methods compute alignment using knowledge-driven and performance analysis approaches.
This PhD furthers the development of performance-score synchronisation research by proposing data-driven, context-aware alignment approaches.
arXiv Detail & Related papers (2022-05-31T16:45:25Z) - A Convolutional-Attentional Neural Framework for Structure-Aware
Performance-Score Synchronization [12.951369232106178]
Performance-score synchronization is an integral task in signal processing.
Traditional synchronization methods compute alignment using knowledge-driven approaches.
We present a novel data-driven method for structure-score synchronization.
arXiv Detail & Related papers (2022-04-19T11:41:21Z) - SeCo: Separating Unknown Musical Visual Sounds with Consistency Guidance [88.0355290619761]
This work focuses on the separation of unknown musical instruments.
We propose the Separation-with-Consistency (SeCo) framework, which can accomplish the separation on unknown categories.
Our framework exhibits strong adaptation ability on the novel musical categories and outperforms the baseline methods by a significant margin.
arXiv Detail & Related papers (2022-03-25T09:42:11Z) - Sequence Generation using Deep Recurrent Networks and Embeddings: A
study case in music [69.2737664640826]
This paper evaluates different types of memory mechanisms (memory cells) and analyses their performance in the field of music composition.
A set of quantitative metrics is presented to evaluate the performance of the proposed architecture automatically.
arXiv Detail & Related papers (2020-12-02T14:19:19Z) - Score-informed Networks for Music Performance Assessment [64.12728872707446]
Deep neural network-based methods incorporating score information into MPA models have not yet been investigated.
We introduce three different models capable of score-informed performance assessment.
arXiv Detail & Related papers (2020-08-01T07:46:24Z) - Music Gesture for Visual Sound Separation [121.36275456396075]
"Music Gesture" is a keypoint-based structured representation to explicitly model the body and finger movements of musicians when they perform music.
We first adopt a context-aware graph network to integrate visual semantic context with body dynamics, and then apply an audio-visual fusion model to associate body movements with the corresponding audio signals.
arXiv Detail & Related papers (2020-04-20T17:53:46Z) - Audio Impairment Recognition Using a Correlation-Based Feature
Representation [85.08880949780894]
We propose a new representation of hand-crafted features that is based on the correlation of feature pairs.
We show superior performance in terms of compact feature dimensionality and improved computational speed in the test stage.
arXiv Detail & Related papers (2020-03-22T13:34:37Z) - Modeling Musical Structure with Artificial Neural Networks [0.0]
I explore the application of artificial neural networks to different aspects of musical structure modeling.
I show how a connectionist model, the Gated Autoencoder (GAE), can be employed to learn transformations between musical fragments.
I propose a special predictive training of the GAE, which yields a representation of polyphonic music as a sequence of intervals.
arXiv Detail & Related papers (2020-01-06T18:35:57Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.