Offline RL via Feature-Occupancy Gradient Ascent
- URL: http://arxiv.org/abs/2405.13755v1
- Date: Wed, 22 May 2024 15:39:05 GMT
- Title: Offline RL via Feature-Occupancy Gradient Ascent
- Authors: Gergely Neu, Nneka Okolo,
- Abstract summary: We study offline Reinforcement Learning in large infinite-horizon discounted Markov Decision Processes (MDPs)
We develop a new algorithm that performs a form of gradient ascent in the space of feature occupancies.
We show that the resulting simple algorithm satisfies strong computational and sample complexity guarantees.
- Score: 9.983014605039658
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We study offline Reinforcement Learning in large infinite-horizon discounted Markov Decision Processes (MDPs) when the reward and transition models are linearly realizable under a known feature map. Starting from the classic linear-program formulation of the optimal control problem in MDPs, we develop a new algorithm that performs a form of gradient ascent in the space of feature occupancies, defined as the expected feature vectors that can potentially be generated by executing policies in the environment. We show that the resulting simple algorithm satisfies strong computational and sample complexity guarantees, achieved under the least restrictive data coverage assumptions known in the literature. In particular, we show that the sample complexity of our method scales optimally with the desired accuracy level and depends on a weak notion of coverage that only requires the empirical feature covariance matrix to cover a single direction in the feature space (as opposed to covering a full subspace). Additionally, our method is easy to implement and requires no prior knowledge of the coverage ratio (or even an upper bound on it), which altogether make it the strongest known algorithm for this setting to date.
Related papers
- Model-based RL as a Minimalist Approach to Horizon-Free and Second-Order Bounds [59.875550175217874]
We show that a simple Model-based Reinforcement Learning scheme achieves strong regret and sample bounds in online and offline RL settings.
We highlight that our algorithms are simple, fairly standard, and indeed have been extensively studied in the RL literature.
arXiv Detail & Related papers (2024-08-16T19:52:53Z) - Sample Complexity of Offline Distributionally Robust Linear Markov Decision Processes [37.15580574143281]
offline reinforcement learning (RL)
This paper considers the sample complexity of distributionally robust linear Markov decision processes (MDPs) with an uncertainty set characterized by the total variation distance using offline data.
We develop a pessimistic model-based algorithm and establish its sample complexity bound under minimal data coverage assumptions.
arXiv Detail & Related papers (2024-03-19T17:48:42Z) - Efficient Model-Free Exploration in Low-Rank MDPs [76.87340323826945]
Low-Rank Markov Decision Processes offer a simple, yet expressive framework for RL with function approximation.
Existing algorithms are either (1) computationally intractable, or (2) reliant upon restrictive statistical assumptions.
We propose the first provably sample-efficient algorithm for exploration in Low-Rank MDPs.
arXiv Detail & Related papers (2023-07-08T15:41:48Z) - Maximize to Explore: One Objective Function Fusing Estimation, Planning,
and Exploration [87.53543137162488]
We propose an easy-to-implement online reinforcement learning (online RL) framework called textttMEX.
textttMEX integrates estimation and planning components while balancing exploration exploitation automatically.
It can outperform baselines by a stable margin in various MuJoCo environments with sparse rewards.
arXiv Detail & Related papers (2023-05-29T17:25:26Z) - Offline Reinforcement Learning with Additional Covering Distributions [0.0]
We study learning optimal policies from a logged dataset, i.e., offline RL, with function approximation.
We show that sample-efficient offline RL for general MDPs is possible with only a partial coverage dataset and weak realizable function classes.
arXiv Detail & Related papers (2023-05-22T03:31:03Z) - Offline Minimax Soft-Q-learning Under Realizability and Partial Coverage [100.8180383245813]
We propose value-based algorithms for offline reinforcement learning (RL)
We show an analogous result for vanilla Q-functions under a soft margin condition.
Our algorithms' loss functions arise from casting the estimation problems as nonlinear convex optimization problems and Lagrangifying.
arXiv Detail & Related papers (2023-02-05T14:22:41Z) - Sample-Efficient Reinforcement Learning Is Feasible for Linearly
Realizable MDPs with Limited Revisiting [60.98700344526674]
Low-complexity models such as linear function representation play a pivotal role in enabling sample-efficient reinforcement learning.
In this paper, we investigate a new sampling protocol, which draws samples in an online/exploratory fashion but allows one to backtrack and revisit previous states in a controlled and infrequent manner.
We develop an algorithm tailored to this setting, achieving a sample complexity that scales practicallyly with the feature dimension, the horizon, and the inverse sub-optimality gap, but not the size of the state/action space.
arXiv Detail & Related papers (2021-05-17T17:22:07Z) - Policy Gradient Methods for the Noisy Linear Quadratic Regulator over a
Finite Horizon [3.867363075280544]
We explore reinforcement learning methods for finding the optimal policy in the linear quadratic regulator (LQR) problem.
We produce a global linear convergence guarantee for the setting of finite time horizon and state dynamics under weak assumptions.
We show results for the case where we assume a model for the underlying dynamics and where we apply the method to the data directly.
arXiv Detail & Related papers (2020-11-20T09:51:49Z) - Adaptive Sampling for Best Policy Identification in Markov Decision
Processes [79.4957965474334]
We investigate the problem of best-policy identification in discounted Markov Decision (MDPs) when the learner has access to a generative model.
The advantages of state-of-the-art algorithms are discussed and illustrated.
arXiv Detail & Related papers (2020-09-28T15:22:24Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.