論文の概要: Perceptual Fairness in Image Restoration
- arxiv url: http://arxiv.org/abs/2405.13805v2
- Date: Sat, 12 Oct 2024 12:43:47 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-10-15 15:05:33.255744
- Title: Perceptual Fairness in Image Restoration
- Title(参考訳): 画像修復における知覚的公正性
- Authors: Guy Ohayon, Michael Elad, Tomer Michaeli,
- Abstract要約: グループ知覚指数(グループ知覚指数、GPI)は、グループの基底真理像の分布とそれらの再構成の分布の間の統計的距離である。
異なるグループのGPIを比較してアルゴリズムの公平性を評価し、全てのグループのGPIが同一であれば、パーセプティカルフェアネス(PF)が完璧であることを示す。
- 参考スコア(独自算出の注目度): 34.50287066865267
- License:
- Abstract: Fairness in image restoration tasks is the desire to treat different sub-groups of images equally well. Existing definitions of fairness in image restoration are highly restrictive. They consider a reconstruction to be a correct outcome for a group (e.g., women) only if it falls within the group's set of ground truth images (e.g., natural images of women); otherwise, it is considered entirely incorrect. Consequently, such definitions are prone to controversy, as errors in image restoration can manifest in various ways. In this work we offer an alternative approach towards fairness in image restoration, by considering the Group Perceptual Index (GPI), which we define as the statistical distance between the distribution of the group's ground truth images and the distribution of their reconstructions. We assess the fairness of an algorithm by comparing the GPI of different groups, and say that it achieves perfect Perceptual Fairness (PF) if the GPIs of all groups are identical. We motivate and theoretically study our new notion of fairness, draw its connection to previous ones, and demonstrate its utility on state-of-the-art face image restoration algorithms.
- Abstract(参考訳): 画像復元タスクの公平性は、画像の異なるサブグループを等しく扱いたいという欲求である。
画像復元における既存の公平性の定義は非常に制限的である。
彼らは、再建が集団(例えば、女性)にとって正しい結果であるとみなし、それがグループの根底にある真実のイメージ(例えば、女性の自然なイメージ)に該当する場合のみ、そうでなければ完全に間違っていると考えられている。
その結果、画像復元における誤りが様々な方法で現れるため、このような定義は論争を招きがちである。
本研究は,グループ知覚指数(GPI)を用いて,画像復元における公平性に対する代替的アプローチを提案する。
異なるグループのGPIを比較してアルゴリズムの公平性を評価し、全てのグループのGPIが同一であれば、パーセプティカルフェアネス(PF)が完璧であることを示す。
我々は、新しい公正の概念を動機付け、理論的に研究し、それ以前のものとの関係を描き、最先端の顔画像復元アルゴリズムでその有用性を実証する。
関連論文リスト
- Implementing Fairness: the view from a FairDream [0.0]
私たちはAIモデルをトレーニングし、不平等を検出して修正するために、独自の公正パッケージFairDreamを開発します。
本実験は,FairDreamの特性として,真理を条件としたフェアネスの目標を達成できることを実証した。
論文 参考訳(メタデータ) (2024-07-20T06:06:24Z) - Learning to Rank Patches for Unbiased Image Redundancy Reduction [80.93989115541966]
画像は、隣接する領域の画素が空間的に相関しているため、空間的冗長性に悩まされる。
既存のアプローチでは、意味の少ない画像領域を減らし、この制限を克服しようとしている。
本稿では,Learning to Rank Patchesと呼ばれる画像冗長性低減のための自己教師型フレームワークを提案する。
論文 参考訳(メタデータ) (2024-03-31T13:12:41Z) - Classes Are Not Equal: An Empirical Study on Image Recognition Fairness [100.36114135663836]
我々は,クラスが等しくないことを実験的に証明し,様々なデータセットにまたがる画像分類モデルにおいて,公平性の問題が顕著であることを示した。
以上の結果から,モデルでは認識が困難であるクラスに対して,予測バイアスが大きくなる傾向が示唆された。
データ拡張および表現学習アルゴリズムは、画像分類のある程度の公平性を促進することにより、全体的なパフォーマンスを向上させる。
論文 参考訳(メタデータ) (2024-02-28T07:54:50Z) - Interpretable Measures of Conceptual Similarity by
Complexity-Constrained Descriptive Auto-Encoding [112.0878081944858]
画像間の類似度を定量化することは、画像ベースの機械学習にとって重要な著作権問題である。
我々は,高次関係を捉えた画像間での「概念的類似性」の概念を定義し,計算することを目指している。
2つの非常に異種な画像は、その記述の早い段階で識別できるが、概念的に異種な画像は、より詳細を区別する必要がある。
論文 参考訳(メタデータ) (2024-02-14T03:31:17Z) - Fair Without Leveling Down: A New Intersectional Fairness Definition [1.0958014189747356]
本稿では,感性グループ間での絶対値と相対値のパフォーマンスを組み合わせた$alpha$-Intersectional Fairnessという新たな定義を提案する。
我々は、新しいフェアネス定義を用いて、複数の一般的なプロセス内機械学習アプローチをベンチマークし、単純なベースラインよりも改善が得られないことを示します。
論文 参考訳(メタデータ) (2023-05-21T16:15:12Z) - Fair Group-Shared Representations with Normalizing Flows [68.29997072804537]
本研究では,異なるグループに属する個人を1つのグループにマッピングできる公正表現学習アルゴリズムを開発した。
提案手法は,他の公正表現学習アルゴリズムと競合することを示す。
論文 参考訳(メタデータ) (2022-01-17T10:49:49Z) - Fair Representation: Guaranteeing Approximate Multiple Group Fairness
for Unknown Tasks [17.231251035416648]
本研究では,未知のタスクに対して公平性を保証し,複数のフェアネス概念を同時に活用できるかどうかを考察する。
公平な表現は全ての予測タスクに対して公平性を保証するわけではないが、重要なタスクのサブセットに対して公平性を保証する。
論文 参考訳(メタデータ) (2021-09-01T17:29:11Z) - Fairness for Image Generation with Uncertain Sensitive Attributes [97.81354305427871]
この研究は、画像超解像のような生成手順の文脈における公平性の問題に取り組む。
伝統的群フェアネスの定義は通常、指定された保護された群に関して定義されるが、本質的な真偽は存在しないことを強調する。
人口比率の自然拡大はグループ化に強く依存しており、明白に達成可能であることを示す。
論文 参考訳(メタデータ) (2021-06-23T06:17:17Z) - Metric-Free Individual Fairness with Cooperative Contextual Bandits [17.985752744098267]
グループフェアネスは、グループ内の一部の個人に対して不公平であるように、異なるグループが同様に扱われるべきである。
個々の公正性は、問題固有の類似度指標に依存するため、まだ検討されていない。
本研究では,メトリックフリーな個人フェアネスと協調的文脈帯域幅アルゴリズムを提案する。
論文 参考訳(メタデータ) (2020-11-13T03:10:35Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。