QGait: Toward Accurate Quantization for Gait Recognition with Binarized Input
- URL: http://arxiv.org/abs/2405.13859v1
- Date: Wed, 22 May 2024 17:34:18 GMT
- Title: QGait: Toward Accurate Quantization for Gait Recognition with Binarized Input
- Authors: Senmao Tian, Haoyu Gao, Gangyi Hong, Shuyun Wang, JingJie Wang, Xin Yu, Shunli Zhang,
- Abstract summary: We propose a differentiable soft quantizer, which better simulates the gradient of the round function during backpropagation.
This enables the network to learn from subtle input perturbations.
We further refine the training strategy to ensure convergence while simulating quantization errors.
- Score: 17.017127559393398
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: Existing deep learning methods have made significant progress in gait recognition. Typically, appearance-based models binarize inputs into silhouette sequences. However, mainstream quantization methods prioritize minimizing task loss over quantization error, which is detrimental to gait recognition with binarized inputs. Minor variations in silhouette sequences can be diminished in the network's intermediate layers due to the accumulation of quantization errors. To address this, we propose a differentiable soft quantizer, which better simulates the gradient of the round function during backpropagation. This enables the network to learn from subtle input perturbations. However, our theoretical analysis and empirical studies reveal that directly applying the soft quantizer can hinder network convergence. We further refine the training strategy to ensure convergence while simulating quantization errors. Additionally, we visualize the distribution of outputs from different samples in the feature space and observe significant changes compared to the full precision network, which harms performance. Based on this, we propose an Inter-class Distance-guided Distillation (IDD) strategy to preserve the relative distance between the embeddings of samples with different labels. Extensive experiments validate the effectiveness of our approach, demonstrating state-of-the-art accuracy across various settings and datasets. The code will be made publicly available.
Related papers
- PseudoNeg-MAE: Self-Supervised Point Cloud Learning using Conditional Pseudo-Negative Embeddings [55.55445978692678]
PseudoNeg-MAE is a self-supervised learning framework that enhances global feature representation of point cloud mask autoencoders.
We show that PseudoNeg-MAE achieves state-of-the-art performance on the ModelNet40 and ScanObjectNN datasets.
arXiv Detail & Related papers (2024-09-24T07:57:21Z) - WiNet: Wavelet-based Incremental Learning for Efficient Medical Image Registration [68.25711405944239]
Deep image registration has demonstrated exceptional accuracy and fast inference.
Recent advances have adopted either multiple cascades or pyramid architectures to estimate dense deformation fields in a coarse-to-fine manner.
We introduce a model-driven WiNet that incrementally estimates scale-wise wavelet coefficients for the displacement/velocity field across various scales.
arXiv Detail & Related papers (2024-07-18T11:51:01Z) - Probing the Purview of Neural Networks via Gradient Analysis [13.800680101300756]
We analyze the data-dependent capacity of neural networks and assess anomalies in inputs from the perspective of networks during inference.
To probe the purview of a network, we utilize gradients to measure the amount of change required for the model to characterize the given inputs more accurately.
We demonstrate that our gradient-based approach can effectively differentiate inputs that cannot be accurately represented with learned features.
arXiv Detail & Related papers (2023-04-06T03:02:05Z) - Neural Networks with Quantization Constraints [111.42313650830248]
We present a constrained learning approach to quantization training.
We show that the resulting problem is strongly dual and does away with gradient estimations.
We demonstrate that the proposed approach exhibits competitive performance in image classification tasks.
arXiv Detail & Related papers (2022-10-27T17:12:48Z) - Post-training Quantization for Neural Networks with Provable Guarantees [9.58246628652846]
We modify a post-training neural-network quantization method, GPFQ, that is based on a greedy path-following mechanism.
We prove that for quantizing a single-layer network, the relative square error essentially decays linearly in the number of weights.
arXiv Detail & Related papers (2022-01-26T18:47:38Z) - SignalNet: A Low Resolution Sinusoid Decomposition and Estimation
Network [79.04274563889548]
We propose SignalNet, a neural network architecture that detects the number of sinusoids and estimates their parameters from quantized in-phase and quadrature samples.
We introduce a worst-case learning threshold for comparing the results of our network relative to the underlying data distributions.
In simulation, we find that our algorithm is always able to surpass the threshold for three-bit data but often cannot exceed the threshold for one-bit data.
arXiv Detail & Related papers (2021-06-10T04:21:20Z) - Data-free mixed-precision quantization using novel sensitivity metric [6.031526641614695]
We propose a novel sensitivity metric that considers the effect of quantization error on task loss and interaction with other layers.
Our experiments show that the proposed metric better represents quantization sensitivity, and generated data are more feasible to be applied to mixed-precision quantization.
arXiv Detail & Related papers (2021-03-18T07:23:21Z) - DAQ: Distribution-Aware Quantization for Deep Image Super-Resolution
Networks [49.191062785007006]
Quantizing deep convolutional neural networks for image super-resolution substantially reduces their computational costs.
Existing works either suffer from a severe performance drop in ultra-low precision of 4 or lower bit-widths, or require a heavy fine-tuning process to recover the performance.
We propose a novel distribution-aware quantization scheme (DAQ) which facilitates accurate training-free quantization in ultra-low precision.
arXiv Detail & Related papers (2020-12-21T10:19:42Z) - QuantNet: Learning to Quantize by Learning within Fully Differentiable
Framework [32.465949985191635]
This paper proposes a meta-based quantizer named QuantNet, which utilizes a differentiable sub-network to directly binarize the full-precision weights.
Our method not only solves the problem of gradient mismatching, but also reduces the impact of discretization errors, caused by the binarizing operation in the deployment.
arXiv Detail & Related papers (2020-09-10T01:41:05Z) - Learning What Makes a Difference from Counterfactual Examples and
Gradient Supervision [57.14468881854616]
We propose an auxiliary training objective that improves the generalization capabilities of neural networks.
We use pairs of minimally-different examples with different labels, a.k.a counterfactual or contrasting examples, which provide a signal indicative of the underlying causal structure of the task.
Models trained with this technique demonstrate improved performance on out-of-distribution test sets.
arXiv Detail & Related papers (2020-04-20T02:47:49Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.