Transformers Can Learn Temporal Difference Methods for In-Context Reinforcement Learning
- URL: http://arxiv.org/abs/2405.13861v4
- Date: Mon, 24 Feb 2025 20:47:35 GMT
- Title: Transformers Can Learn Temporal Difference Methods for In-Context Reinforcement Learning
- Authors: Jiuqi Wang, Ethan Blaser, Hadi Daneshmand, Shangtong Zhang,
- Abstract summary: reinforcement learning (RL) agents learn to solve new tasks by updating their neural network parameters through interactions with the task environment.<n>Recent works demonstrate that some RL agents, after certain pretraining procedures, can learn to solve unseen new tasks without parameter updates.
- Score: 17.714908233024847
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Traditionally, reinforcement learning (RL) agents learn to solve new tasks by updating their neural network parameters through interactions with the task environment. However, recent works demonstrate that some RL agents, after certain pretraining procedures, can learn to solve unseen new tasks without parameter updates, a phenomenon known as in-context reinforcement learning (ICRL). The empirical success of ICRL is widely attributed to the hypothesis that the forward pass of the pretrained agent neural network implements an RL algorithm. In this paper, we support this hypothesis by showing, both empirically and theoretically, that when a transformer is trained for policy evaluation tasks, it can discover and learn to implement temporal difference learning in its forward pass.
Related papers
- A Survey of In-Context Reinforcement Learning [41.74105124619678]
Some agents can solve new tasks without updating any parameters by simply conditioning on additional context.
This paper surveys work on such behavior, known as in-context reinforcement learning.
arXiv Detail & Related papers (2025-02-11T21:52:19Z) - One-Layer Transformer Provably Learns One-Nearest Neighbor In Context [48.4979348643494]
We study the capability of one-layer transformers learning the one-nearest neighbor rule.
A single softmax attention layer can successfully learn to behave like a one-nearest neighbor.
arXiv Detail & Related papers (2024-11-16T16:12:42Z) - On the Role of Depth and Looping for In-Context Learning with Task Diversity [69.4145579827826]
We study in-context learning for linear regression with diverse tasks.
We show that multilayer Transformers are not robust to even distributional shifts as small as $O(e-L)$ in Wasserstein distance.
arXiv Detail & Related papers (2024-10-29T03:27:56Z) - Bypassing the Exponential Dependency: Looped Transformers Efficiently Learn In-context by Multi-step Gradient Descent [26.764893400499354]
We show that linear looped Transformers can implement multi-step gradient descent efficiently for in-context learning.
Our results demonstrate that as long as the input data has a constant condition number, $n = O(d)$, the linear looped Transformers can achieve a small error.
arXiv Detail & Related papers (2024-10-15T04:44:23Z) - Trained Transformer Classifiers Generalize and Exhibit Benign Overfitting In-Context [25.360386832940875]
We show that when linear transformers are pre-trained on random instances for linear regression tasks, they make predictions using an algorithm similar to that of ordinary least squares.
In some settings, these trained transformers can exhibit "benign overfitting in-context"
arXiv Detail & Related papers (2024-10-02T17:30:21Z) - In-Context Learning with Representations: Contextual Generalization of Trained Transformers [66.78052387054593]
In-context learning (ICL) refers to a capability of pretrained large language models, which can learn a new task given a few examples during inference.
This paper investigates the training dynamics of transformers by gradient descent through the lens of non-linear regression tasks.
arXiv Detail & Related papers (2024-08-19T16:47:46Z) - Can Transformers Learn Sequential Function Classes In Context? [0.0]
In-context learning (ICL) has revolutionized the capabilities of transformer models in NLP.
We introduce a novel sliding window sequential function class and employ toy-sized transformers with a GPT-2 architecture to conduct our experiments.
Our analysis indicates that these models can indeed leverage ICL when trained on non-textual sequential function classes.
arXiv Detail & Related papers (2023-12-19T22:57:13Z) - In-Context Convergence of Transformers [63.04956160537308]
We study the learning dynamics of a one-layer transformer with softmax attention trained via gradient descent.
For data with imbalanced features, we show that the learning dynamics take a stage-wise convergence process.
arXiv Detail & Related papers (2023-10-08T17:55:33Z) - Supervised Pretraining Can Learn In-Context Reinforcement Learning [96.62869749926415]
In this paper, we study the in-context learning capabilities of transformers in decision-making problems.
We introduce and study Decision-Pretrained Transformer (DPT), a supervised pretraining method where the transformer predicts an optimal action.
We find that the pretrained transformer can be used to solve a range of RL problems in-context, exhibiting both exploration online and conservatism offline.
arXiv Detail & Related papers (2023-06-26T17:58:50Z) - Transformers learn in-context by gradient descent [58.24152335931036]
Training Transformers on auto-regressive objectives is closely related to gradient-based meta-learning formulations.
We show how trained Transformers become mesa-optimizers i.e. learn models by gradient descent in their forward pass.
arXiv Detail & Related papers (2022-12-15T09:21:21Z) - Meta Reinforcement Learning with Successor Feature Based Context [51.35452583759734]
We propose a novel meta-RL approach that achieves competitive performance comparing to existing meta-RL algorithms.
Our method does not only learn high-quality policies for multiple tasks simultaneously but also can quickly adapt to new tasks with a small amount of training.
arXiv Detail & Related papers (2022-07-29T14:52:47Z) - Renaissance Robot: Optimal Transport Policy Fusion for Learning Diverse
Skills [28.39150937658635]
We propose a post-hoc technique for policy fusion using Optimal Transport theory.
This provides an improved weights initialisation of the neural network policy for learning new tasks.
Our results show that specialised knowledge can be unified into a "Renaissance agent", allowing for quicker learning of new skills.
arXiv Detail & Related papers (2022-07-03T08:15:41Z) - Learning Dynamics and Generalization in Reinforcement Learning [59.530058000689884]
We show theoretically that temporal difference learning encourages agents to fit non-smooth components of the value function early in training.
We show that neural networks trained using temporal difference algorithms on dense reward tasks exhibit weaker generalization between states than randomly networks and gradient networks trained with policy methods.
arXiv Detail & Related papers (2022-06-05T08:49:16Z) - Lean Evolutionary Reinforcement Learning by Multitasking with Importance
Sampling [20.9680985132322]
We introduce a novel neuroevolutionary multitasking (NuEMT) algorithm to transfer information from a set of auxiliary tasks to the target (full length) RL task.
We demonstrate that the NuEMT algorithm data-lean evolutionary RL, reducing expensive agent-environment interaction data requirements.
arXiv Detail & Related papers (2022-03-21T10:06:16Z) - What is Going on Inside Recurrent Meta Reinforcement Learning Agents? [63.58053355357644]
Recurrent meta reinforcement learning (meta-RL) agents are agents that employ a recurrent neural network (RNN) for the purpose of "learning a learning algorithm"
We shed light on the internal working mechanisms of these agents by reformulating the meta-RL problem using the Partially Observable Markov Decision Process (POMDP) framework.
arXiv Detail & Related papers (2021-04-29T20:34:39Z) - Parrot: Data-Driven Behavioral Priors for Reinforcement Learning [79.32403825036792]
We propose a method for pre-training behavioral priors that can capture complex input-output relationships observed in successful trials.
We show how this learned prior can be used for rapidly learning new tasks without impeding the RL agent's ability to try out novel behaviors.
arXiv Detail & Related papers (2020-11-19T18:47:40Z) - Transient Non-Stationarity and Generalisation in Deep Reinforcement
Learning [67.34810824996887]
Non-stationarity can arise in Reinforcement Learning (RL) even in stationary environments.
We propose Iterated Relearning (ITER) to improve generalisation of deep RL agents.
arXiv Detail & Related papers (2020-06-10T13:26:31Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.