論文の概要: Bias-field digitized counterdiabatic quantum optimization
- arxiv url: http://arxiv.org/abs/2405.13898v1
- Date: Wed, 22 May 2024 18:11:42 GMT
- ステータス: 処理完了
- システム内更新日: 2024-05-24 20:43:22.446270
- Title: Bias-field digitized counterdiabatic quantum optimization
- Title(参考訳): Bias-field Digitalized counterdiabatic quantum optimization
- Authors: Alejandro Gomez Cadavid, Archismita Dalal, Anton Simen, Enrique Solano, Narendra N. Hegade,
- Abstract要約: 我々はこのプロトコルをバイアス場デジタルダイアバティック量子最適化(BF-DCQO)と呼ぶ。
私たちの純粋に量子的なアプローチは、古典的な変分量子アルゴリズムへの依存を排除します。
基底状態の成功確率のスケーリング改善を実現し、最大2桁まで増大する。
- 参考スコア(独自算出の注目度): 39.58317527488534
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: We introduce a method for solving combinatorial optimization problems on digital quantum computers, where we incorporate auxiliary counterdiabatic (CD) terms into the adiabatic Hamiltonian, while integrating bias terms derived from an iterative digitized counterdiabatic quantum algorithm. We call this protocol bias-field digitized counterdiabatic quantum optimization (BF-DCQO). Designed to effectively tackle large-scale combinatorial optimization problems, BF-DCQO demonstrates resilience against the limitations posed by the restricted coherence times of current quantum processors and shows clear enhancement even in the presence of noise. Additionally, our purely quantum approach eliminates the dependency on classical optimization required in hybrid classical-quantum schemes, thereby circumventing the trainability issues often associated with variational quantum algorithms. Through the analysis of an all-to-all connected general Ising spin-glass problem, we exhibit a polynomial scaling enhancement in ground state success probability compared to traditional DCQO and finite-time adiabatic quantum optimization methods. Furthermore, it achieves scaling improvements in ground state success probabilities, increasing by up to two orders of magnitude, and offers an average 1.3x better approximation ratio than the quantum approximate optimization algorithm for the problem sizes studied. We validate these findings through experimental implementations on both trapped-ion quantum computers and superconducting processors, tackling a maximum weighted independent set problem with 36 qubits and a spin-glass on a heavy-hex lattice with 100 qubits, respectively. These results mark a significant advancement in gate-based quantum computing, employing a fully quantum algorithmic approach.
- Abstract(参考訳): 本稿では,デジタル量子コンピュータにおける組合せ最適化問題の解法を提案する。そこでは,逐次ディジタル化された反断熱量子アルゴリズムから導出されるバイアス項を統合するとともに,補助的反断熱量子(CD)項をアディアバティック・ハミルトニアンに組み込む。
本稿では,このプロトコルをBF-DCQO(BF-DCQO)と呼ぶ。
大規模な組合せ最適化問題に効果的に対処するために設計されたBF-DCQOは、現在の量子プロセッサのコヒーレンス時間制限による制限に対するレジリエンスを示し、ノイズの存在下でも明確に拡張されている。
さらに、我々の純粋量子アプローチは、ハイブリッド古典量子スキームで必要とされる古典最適化への依存を排除し、変分量子アルゴリズムに関連するトレーニング可能性の問題を回避する。
一般Isingスピングラス問題の解析を通じて,従来のDCQO法や有限時間断熱量子最適化法と比較して,基底状態の成功確率の多項式スケーリング向上を示す。
さらに、地上状態の成功確率のスケーリング改善を実現し、最大2桁まで増加し、研究した問題サイズに対する量子近似アルゴリズムよりも平均1.3倍良い近似比を提供する。
トラップイオン量子コンピュータと超伝導プロセッサの両方に実験的に実装し,36量子ビットの最大重み付き独立セット問題と100量子ビットの重み付き格子上のスピングラスを用いて,これらの知見を検証した。
これらの結果は、完全に量子アルゴリズムのアプローチを用いて、ゲートベースの量子コンピューティングの大幅な進歩を示す。
関連論文リスト
- Hybrid quantum-classical approach for combinatorial problems at hadron colliders [7.2572969510173655]
粒子物理学実験における問題を解くために量子アルゴリズムの可能性を探る。
大型ハドロン衝突型加速器の完全ハドロンチャネルにおけるトップクォーク対生成について検討した。
量子アルゴリズムを用いることで,正しいペアリングを選択する効率を大幅に向上することを示す。
論文 参考訳(メタデータ) (2024-10-29T18:00:07Z) - Performant near-term quantum combinatorial optimization [1.1999555634662633]
線形深度回路を用いた最適化問題に対する変分量子アルゴリズムを提案する。
我々のアルゴリズムは、ターゲット量子関数の各項を制御するために設計されたハミルトン生成器からなるアンサッツを使用する。
性能と資源最小化のアプローチは、潜在的な量子計算上の利点の候補として有望である、と結論付けます。
論文 参考訳(メタデータ) (2024-04-24T18:49:07Z) - Near-Term Distributed Quantum Computation using Mean-Field Corrections
and Auxiliary Qubits [77.04894470683776]
本稿では,限られた情報伝達と保守的絡み合い生成を含む短期分散量子コンピューティングを提案する。
我々はこれらの概念に基づいて、変分量子アルゴリズムの断片化事前学習のための近似回路切断手法を作成する。
論文 参考訳(メタデータ) (2023-09-11T18:00:00Z) - A Universal Quantum Algorithm for Weighted Maximum Cut and Ising
Problems [0.0]
本稿では,二項問題の近似解を計算するためのハイブリッド量子古典アルゴリズムを提案する。
我々は、重み付き最大カットまたはイジング・ハミルトン演算子をブロック符号化するユニタリおよびエルミート演算子を実装するために浅深さ量子回路を用いる。
この作用素の変動量子状態への期待を測定すると、量子系の変動エネルギーが得られる。
論文 参考訳(メタデータ) (2023-06-10T23:28:13Z) - Quantum Annealing for Single Image Super-Resolution [86.69338893753886]
単一画像超解像(SISR)問題を解くために,量子コンピューティングに基づくアルゴリズムを提案する。
提案したAQCアルゴリズムは、SISRの精度を維持しつつ、古典的なアナログよりも向上したスピードアップを実現する。
論文 参考訳(メタデータ) (2023-04-18T11:57:15Z) - Quantum Worst-Case to Average-Case Reductions for All Linear Problems [66.65497337069792]
量子アルゴリズムにおける最悪のケースと平均ケースの削減を設計する問題について検討する。
量子アルゴリズムの明示的で効率的な変換は、入力のごく一部でのみ正し、全ての入力で正しくなる。
論文 参考訳(メタデータ) (2022-12-06T22:01:49Z) - Constrained Quantum Optimization for Extractive Summarization on a
Trapped-ion Quantum Computer [13.528362112761805]
本稿では,量子ハードウェアの制約を保存する量子最適化アルゴリズムの,これまでで最大の実行方法を示す。
我々は、最大20キュービットと2キュービットゲート深さ最大159の量子進化を制限するXY-QAOA回路を実行する。
本稿では,アルゴリズムのトレードオフと,短期量子ハードウェア上での実行に対する影響について論じる。
論文 参考訳(メタデータ) (2022-06-13T16:21:04Z) - Squeezing and quantum approximate optimization [0.6562256987706128]
変分量子アルゴリズムは、デジタル量子コンピュータを用いた最適化問題の解法として興味深い可能性を提供する。
しかし、そのようなアルゴリズムにおける達成可能な性能と量子相関の役割は未だ不明である。
我々は、IBM量子チップと同様に、システマティックな手順で高度に圧縮された状態が生成されるかを数値的に示す。
論文 参考訳(メタデータ) (2022-05-20T18:00:06Z) - Variational Quantum Optimization with Multi-Basis Encodings [62.72309460291971]
マルチバスグラフ複雑性と非線形活性化関数の2つの革新の恩恵を受ける新しい変分量子アルゴリズムを導入する。
その結果,最適化性能が向上し,有効景観が2つ向上し,測定の進歩が減少した。
論文 参考訳(メタデータ) (2021-06-24T20:16:02Z) - Space-efficient binary optimization for variational computing [68.8204255655161]
本研究では,トラベリングセールスマン問題に必要なキュービット数を大幅に削減できることを示す。
また、量子ビット効率と回路深さ効率のモデルを円滑に補間する符号化方式を提案する。
論文 参考訳(メタデータ) (2020-09-15T18:17:27Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。