Nondeterministic Causal Models
- URL: http://arxiv.org/abs/2405.14001v2
- Date: Sat, 24 Aug 2024 18:13:21 GMT
- Title: Nondeterministic Causal Models
- Authors: Sander Beckers,
- Abstract summary: We generalize acyclic deterministic structural equation models to the nondeterministic case.
We provide a sound and complete axiomatization of the resulting logic.
- Score: 7.550566004119157
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: We generalize acyclic deterministic structural equation models to the nondeterministic case and argue that it offers an improved semantics for counterfactuals. The standard, deterministic, semantics developed by Halpern (and based on the initial proposal of Galles & Pearl) assumes that for each assignment of values to parent variables there is a unique assignment to their child variable, and it assumes that the actual world (an assignment of values to all variables of a model) specifies a unique counterfactual world for each intervention. Both assumptions are unrealistic, and therefore we drop both of them in our proposal. We do so by allowing multi-valued functions in the structural equations. In addition, we adjust the semantics so that the solutions to the equations that obtained in the actual world are preserved in any counterfactual world. We provide a sound and complete axiomatization of the resulting logic and compare it to the standard one by Halpern and to more recent proposals that are closer to ours. Finally, we extend our models to the probabilistic case and show that they open up the way to identifying counterfactuals even in Causal Bayesian Networks.
Related papers
- QUITE: Quantifying Uncertainty in Natural Language Text in Bayesian Reasoning Scenarios [15.193544498311603]
We present QUITE, a dataset of real-world Bayesian reasoning scenarios with categorical random variables and complex relationships.
We conduct an extensive set of experiments, finding that logic-based models outperform out-of-the-box large language models on all reasoning types.
Our results provide evidence that neuro-symbolic models are a promising direction for improving complex reasoning.
arXiv Detail & Related papers (2024-10-14T12:44:59Z) - Misspecification in Inverse Reinforcement Learning [80.91536434292328]
The aim of Inverse Reinforcement Learning (IRL) is to infer a reward function $R$ from a policy $pi$.
One of the primary motivations behind IRL is to infer human preferences from human behaviour.
This means that they are misspecified, which raises the worry that they might lead to unsound inferences if applied to real-world data.
arXiv Detail & Related papers (2022-12-06T18:21:47Z) - Random Rank: The One and Only Strategyproof and Proportionally Fair
Randomized Facility Location Mechanism [103.36492220921109]
We show that although Strong Proportionality is a well-motivated and basic axiom, there is no deterministic strategyproof mechanism satisfying the property.
We then identify a randomized mechanism called Random Rank which satisfies Strong Proportionality in expectation.
Our main characterizes Random Rank as the unique mechanism that achieves universal truthfulness, universal anonymity, and Strong Proportionality in expectation.
arXiv Detail & Related papers (2022-05-30T00:51:57Z) - Logical Satisfiability of Counterfactuals for Faithful Explanations in
NLI [60.142926537264714]
We introduce the methodology of Faithfulness-through-Counterfactuals.
It generates a counterfactual hypothesis based on the logical predicates expressed in the explanation.
It then evaluates if the model's prediction on the counterfactual is consistent with that expressed logic.
arXiv Detail & Related papers (2022-05-25T03:40:59Z) - AGM Belief Revision, Semantically [1.7403133838762446]
We establish a generic, model-theoretic characterization of belief revision operators implementing the paradigm of minimal change.
Our characterization applies to all Tarskian logics, that is, all logics with a classical model-theoretic semantics.
arXiv Detail & Related papers (2021-12-27T07:53:21Z) - Diverse, Global and Amortised Counterfactual Explanations for
Uncertainty Estimates [31.241489953967694]
We study the diversity of such sets and find that many CLUEs are redundant.
We then propose GLobal AMortised CLUE (GLAM-CLUE), a distinct and novel method which learns amortised mappings on specific groups of uncertain inputs.
Our experiments show that $delta$-CLUE, $nabla$-CLUE, and GLAM-CLUE all address shortcomings of CLUE and provide beneficial explanations of uncertainty estimates to practitioners.
arXiv Detail & Related papers (2021-12-05T18:27:21Z) - Partial Order in Chaos: Consensus on Feature Attributions in the
Rashomon Set [50.67431815647126]
Post-hoc global/local feature attribution methods are being progressively employed to understand machine learning models.
We show that partial orders of local/global feature importance arise from this methodology.
We show that every relation among features present in these partial orders also holds in the rankings provided by existing approaches.
arXiv Detail & Related papers (2021-10-26T02:53:14Z) - Causal Expectation-Maximisation [70.45873402967297]
We show that causal inference is NP-hard even in models characterised by polytree-shaped graphs.
We introduce the causal EM algorithm to reconstruct the uncertainty about the latent variables from data about categorical manifest variables.
We argue that there appears to be an unnoticed limitation to the trending idea that counterfactual bounds can often be computed without knowledge of the structural equations.
arXiv Detail & Related papers (2020-11-04T10:25:13Z) - A Weaker Faithfulness Assumption based on Triple Interactions [89.59955143854556]
We propose a weaker assumption that we call $2$-adjacency faithfulness.
We propose a sound orientation rule for causal discovery that applies under weaker assumptions.
arXiv Detail & Related papers (2020-10-27T13:04:08Z) - Superdeterministic hidden-variables models II: conspiracy [0.0]
We prove that superdeterministic models of quantum mechanics are conspiratorial in a mathematically well-defined sense.
We show how to quantify superdeterministic conspiracy without using nonequilibrium.
Nonlocal and retrocausal models turn out to be non-conspiratorial according to both approaches.
arXiv Detail & Related papers (2020-03-27T01:01:51Z) - The role of (non)contextuality in Bell's theorems from the perspective
of an operational modeling framework [0.0]
It is shown that noncontextuality is the most general property of an operational model that blocks replication of QM predictions.
It is shown that the construction of convex hulls of finite ensembles of OD model instances is (mathematically) equivalent to the traditional hidden variables approach.
arXiv Detail & Related papers (2020-01-23T20:45:25Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.