Partial Identifiability and Misspecification in Inverse Reinforcement Learning
- URL: http://arxiv.org/abs/2411.15951v1
- Date: Sun, 24 Nov 2024 18:35:46 GMT
- Title: Partial Identifiability and Misspecification in Inverse Reinforcement Learning
- Authors: Joar Skalse, Alessandro Abate,
- Abstract summary: The aim of Inverse Reinforcement Learning is to infer a reward function $R$ from a policy $pi$.
This paper provides a comprehensive analysis of partial identifiability and misspecification in IRL.
- Score: 64.13583792391783
- License:
- Abstract: The aim of Inverse Reinforcement Learning (IRL) is to infer a reward function $R$ from a policy $\pi$. This problem is difficult, for several reasons. First of all, there are typically multiple reward functions which are compatible with a given policy; this means that the reward function is only *partially identifiable*, and that IRL contains a certain fundamental degree of ambiguity. Secondly, in order to infer $R$ from $\pi$, an IRL algorithm must have a *behavioural model* of how $\pi$ relates to $R$. However, the true relationship between human preferences and human behaviour is very complex, and practically impossible to fully capture with a simple model. This means that the behavioural model in practice will be *misspecified*, which raises the worry that it might lead to unsound inferences if applied to real-world data. In this paper, we provide a comprehensive mathematical analysis of partial identifiability and misspecification in IRL. Specifically, we fully characterise and quantify the ambiguity of the reward function for all of the behavioural models that are most common in the current IRL literature. We also provide necessary and sufficient conditions that describe precisely how the observed demonstrator policy may differ from each of the standard behavioural models before that model leads to faulty inferences about the reward function $R$. In addition to this, we introduce a cohesive framework for reasoning about partial identifiability and misspecification in IRL, together with several formal tools that can be used to easily derive the partial identifiability and misspecification robustness of new IRL models, or analyse other kinds of reward learning algorithms.
Related papers
- A Complete Characterization of Learnability for Stochastic Noisy Bandits [19.35221816408955]
We study the noisy bandit problem with an unknown reward function $f*$ in a known function class $mathcalF$.
We give a complete characterization of learnability for model classes with arbitrary noise.
We also prove adaptivity is sometimes necessary to achieve the optimal query complexity.
arXiv Detail & Related papers (2024-10-12T17:23:34Z) - Quantifying the Sensitivity of Inverse Reinforcement Learning to
Misspecification [72.08225446179783]
Inverse reinforcement learning aims to infer an agent's preferences from their behaviour.
To do this, we need a behavioural model of how $pi$ relates to $R$.
We analyse how sensitive the IRL problem is to misspecification of the behavioural model.
arXiv Detail & Related papers (2024-03-11T16:09:39Z) - On the Model-Misspecification in Reinforcement Learning [9.864462523050843]
We present a unified theoretical framework for addressing model misspecification in reinforcement learning.
We show that value-based and model-based methods can achieve robustness under local misspecification error bounds.
We also propose an algorithmic framework that can achieve the same order of regret bound without prior knowledge of $zeta$.
arXiv Detail & Related papers (2023-06-19T04:31:59Z) - Towards Theoretical Understanding of Inverse Reinforcement Learning [45.3190496371625]
Inverse reinforcement learning (IRL) denotes a powerful family of algorithms for recovering a reward function justifying the behavior demonstrated by an expert agent.
In this paper, we make a step towards closing the theory gap of IRL in the case of finite-horizon problems with a generative model.
arXiv Detail & Related papers (2023-04-25T16:21:10Z) - Misspecification in Inverse Reinforcement Learning [80.91536434292328]
The aim of Inverse Reinforcement Learning (IRL) is to infer a reward function $R$ from a policy $pi$.
One of the primary motivations behind IRL is to infer human preferences from human behaviour.
This means that they are misspecified, which raises the worry that they might lead to unsound inferences if applied to real-world data.
arXiv Detail & Related papers (2022-12-06T18:21:47Z) - On the Identifiability and Estimation of Causal Location-Scale Noise
Models [122.65417012597754]
We study the class of location-scale or heteroscedastic noise models (LSNMs)
We show the causal direction is identifiable up to some pathological cases.
We propose two estimators for LSNMs: an estimator based on (non-linear) feature maps, and one based on neural networks.
arXiv Detail & Related papers (2022-10-13T17:18:59Z) - There is no Accuracy-Interpretability Tradeoff in Reinforcement Learning
for Mazes [64.05903267230467]
Interpretability is an essential building block for trustworthiness in reinforcement learning systems.
We show that in certain cases, one can achieve policy interpretability while maintaining its optimality.
arXiv Detail & Related papers (2022-06-09T04:23:26Z) - Invariance in Policy Optimisation and Partial Identifiability in Reward
Learning [67.4640841144101]
We characterise the partial identifiability of the reward function given popular reward learning data sources.
We also analyse the impact of this partial identifiability for several downstream tasks, such as policy optimisation.
arXiv Detail & Related papers (2022-03-14T20:19:15Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.