論文の概要: Animal Behavior Analysis Methods Using Deep Learning: A Survey
- arxiv url: http://arxiv.org/abs/2405.14002v1
- Date: Wed, 22 May 2024 21:17:54 GMT
- ステータス: 処理完了
- システム内更新日: 2024-05-24 20:04:17.214569
- Title: Animal Behavior Analysis Methods Using Deep Learning: A Survey
- Title(参考訳): 深層学習を用いた動物行動分析手法の検討
- Authors: Edoardo Fazzari, Donato Romano, Fabrizio Falchi, Cesare Stefanini,
- Abstract要約: 最先端のディープラーニングモデルは、様々な動物のデータの分類において顕著な精度を示している。
この論文は、動物行動研究の分野を前進させる可能性を秘めている深層学習における重要な研究方向に関する総合的な議論をまとめている。
- 参考スコア(独自算出の注目度): 3.9086052572489653
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Animal behavior serves as a reliable indicator of the adaptation of organisms to their environment and their overall well-being. Through rigorous observation of animal actions and interactions, researchers and observers can glean valuable insights into diverse facets of their lives, encompassing health, social dynamics, ecological relationships, and neuroethological dimensions. Although state-of-the-art deep learning models have demonstrated remarkable accuracy in classifying various forms of animal data, their adoption in animal behavior studies remains limited. This survey article endeavors to comprehensively explore deep learning architectures and strategies applied to the identification of animal behavior, spanning auditory, visual, and audiovisual methodologies. Furthermore, the manuscript scrutinizes extant animal behavior datasets, offering a detailed examination of the principal challenges confronting this research domain. The article culminates in a comprehensive discussion of key research directions within deep learning that hold potential for advancing the field of animal behavior studies.
- Abstract(参考訳): 動物行動は、生物の環境への適応と全体的な健康への適応の信頼できる指標として機能する。
動物行動と相互作用の厳密な観察を通じて、研究者や観察者は、健康、社会的ダイナミクス、生態学的関係、神経倫理学的な次元を含む、彼らの生活の様々な側面に関する貴重な洞察を導き出すことができる。
最先端の深層学習モデルは、様々な動物のデータの分類において顕著な精度を示してきたが、動物行動研究におけるそれらの採用は依然として限られている。
本研究は,動物行動の識別,聴覚,視覚,視覚の方法論を包括的に研究する試みである。
さらに、現存する動物行動データセットを精査し、本研究領域に直面する主な課題について詳細に検討する。
この論文は、動物行動研究の分野を前進させる可能性を秘めている深層学習における重要な研究方向に関する総合的な議論をまとめている。
関連論文リスト
- Computer Vision for Primate Behavior Analysis in the Wild [60.937374400311256]
ビデオに基づく行動監視は、動物の認知と行動を研究する方法を変える大きな可能性を秘めている。
今でも、エキサイティングな見通しと、今日実際に達成できるものの間には、かなり大きなギャップがある。
まず、動物行動のビデオベース研究に直接関係するコンピュータビジョン問題に対する最先端の手法の調査から始める。
次に,実践的な観点からの最大の課題のひとつとして,作業効率のよい学習方法についてレビューする。
論文 参考訳(メタデータ) (2024-01-29T18:59:56Z) - Automated Behavioral Analysis Using Instance Segmentation [2.043437148047176]
動物行動分析は、生命科学や生物医学研究など、様々な分野で重要な役割を果たしている。
利用可能なデータの不足とラベル付きデータセットの大量取得に伴う高コストが大きな課題となっている。
本稿では,これらの問題に対処するために,インスタンスセグメンテーションに基づくトランスファー学習を活用する新しい手法を提案する。
論文 参考訳(メタデータ) (2023-12-12T20:36:36Z) - Predicting the long-term collective behaviour of fish pairs with deep learning [52.83927369492564]
本研究では,魚種Hemigrammus rhodostomusの社会的相互作用を評価するための深層学習モデルを提案する。
我々は、ディープラーニングのアプローチの結果と実験結果と、最先端の分析モデルの結果を比較した。
機械学習モデルにより、ソーシャルインタラクションは、微妙な実験的観測可能な解析的相互作用と直接競合できることを実証する。
論文 参考訳(メタデータ) (2023-02-14T05:25:03Z) - CNN-Based Action Recognition and Pose Estimation for Classifying Animal
Behavior from Videos: A Survey [0.0]
アクション認識(Action Recognition)は、1つ以上の被験者がトリミングされたビデオで行う活動の分類であり、多くの技術の基礎を形成する。
人間の行動認識のためのディープラーニングモデルは、過去10年間に進歩してきた。
近年,深層学習に基づく行動認識を取り入れた研究への関心が高まっている。
論文 参考訳(メタデータ) (2023-01-15T20:54:44Z) - Review on Social Behavior Analysis of Laboratory Animals: From
Methodologies to Applications [0.0]
従来の視覚的手法,統計的手法,深層学習手法を網羅し,多様な行動検出アルゴリズムを探索する。
本研究の目的は、動物行動の効率的な検出方法のひっかき傷を生物学者に与え、関連する研究を徹底的に調査することである。
論文 参考訳(メタデータ) (2022-06-25T13:40:35Z) - Going Deeper than Tracking: a Survey of Computer-Vision Based
Recognition of Animal Pain and Affective States [1.993938356023085]
ますます多くの作品が追跡よりも「絶望的」になり、感情や痛みなどの動物の内的状態の自動認識に対処している。
本稿では,動物における情動状態と痛みの認識に関するコンピュータビジョンに基づく総合的な調査を行う。
論文 参考訳(メタデータ) (2022-06-16T18:50:02Z) - Cetacean Translation Initiative: a roadmap to deciphering the
communication of sperm whales [97.41394631426678]
最近の研究では、非ヒト種における音響コミュニケーションを分析するための機械学習ツールの約束を示した。
マッコウクジラの大量生物音響データの収集と処理に必要な重要な要素について概説する。
開発された技術能力は、非人間コミュニケーションと動物行動研究を研究する幅広いコミュニティにおいて、クロス応用と進歩をもたらす可能性が高い。
論文 参考訳(メタデータ) (2021-04-17T18:39:22Z) - Affect Analysis in-the-wild: Valence-Arousal, Expressions, Action Units
and a Unified Framework [83.21732533130846]
Aff-Wild と Aff-Wild2 の2つである。
これは、これらのデータベースで訓練された深層ニューラルネットワークの2つのクラスの設計を示す。
インパクト認識を共同で学び、効果的に一般化し、実行することができる新しいマルチタスクおよび全体主義のフレームワークが提示されます。
論文 参考訳(メタデータ) (2021-03-29T17:36:20Z) - Perspectives on individual animal identification from biology and
computer vision [58.81800919492064]
計算機科学者と生物学者の両方に利用可能なツールの概要を提供するコンピュータビジョン識別技術の最近の進歩を概観する。
動物識別プロジェクトを始めるための勧告を提示し、現在の限界を説明し、将来どのように対処されるかを提案する。
論文 参考訳(メタデータ) (2021-02-28T16:50:09Z) - Muti-view Mouse Social Behaviour Recognition with Deep Graphical Model [124.26611454540813]
マウスの社会的行動分析は神経変性疾患の治療効果を評価する貴重なツールである。
マウスの社会行動の豊かな記述を創出する可能性から、ネズミの観察にマルチビュービデオ記録を使用することは、ますます注目を集めている。
本稿では,ビュー固有のサブ構造とビュー共有サブ構造を協調的に学習する,新しい多視点潜在意識・動的識別モデルを提案する。
論文 参考訳(メタデータ) (2020-11-04T18:09:58Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。