Animal Behavior Analysis Methods Using Deep Learning: A Survey
- URL: http://arxiv.org/abs/2405.14002v1
- Date: Wed, 22 May 2024 21:17:54 GMT
- Title: Animal Behavior Analysis Methods Using Deep Learning: A Survey
- Authors: Edoardo Fazzari, Donato Romano, Fabrizio Falchi, Cesare Stefanini,
- Abstract summary: State-of-the-art deep learning models have demonstrated remarkable accuracy in classifying various forms of animal data.
The article culminates in a comprehensive discussion of key research directions within deep learning that hold potential for advancing the field of animal behavior studies.
- Score: 3.9086052572489653
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Animal behavior serves as a reliable indicator of the adaptation of organisms to their environment and their overall well-being. Through rigorous observation of animal actions and interactions, researchers and observers can glean valuable insights into diverse facets of their lives, encompassing health, social dynamics, ecological relationships, and neuroethological dimensions. Although state-of-the-art deep learning models have demonstrated remarkable accuracy in classifying various forms of animal data, their adoption in animal behavior studies remains limited. This survey article endeavors to comprehensively explore deep learning architectures and strategies applied to the identification of animal behavior, spanning auditory, visual, and audiovisual methodologies. Furthermore, the manuscript scrutinizes extant animal behavior datasets, offering a detailed examination of the principal challenges confronting this research domain. The article culminates in a comprehensive discussion of key research directions within deep learning that hold potential for advancing the field of animal behavior studies.
Related papers
- Computer Vision for Primate Behavior Analysis in the Wild [61.08941894580172]
Video-based behavioral monitoring has great potential for transforming how we study animal cognition and behavior.
There is still a fairly large gap between the exciting prospects and what can actually be achieved in practice today.
arXiv Detail & Related papers (2024-01-29T18:59:56Z) - Automated Behavioral Analysis Using Instance Segmentation [2.043437148047176]
Animal behavior analysis plays a crucial role in various fields, such as life science and biomedical research.
The scarcity of available data and the high cost associated with obtaining a large number of labeled datasets pose significant challenges.
We propose a novel approach that leverages instance segmentation-based transfer learning to address these issues.
arXiv Detail & Related papers (2023-12-12T20:36:36Z) - Predicting the long-term collective behaviour of fish pairs with deep learning [52.83927369492564]
This study introduces a deep learning model to assess social interactions in the fish species Hemigrammus rhodostomus.
We compare the results of our deep learning approach to experiments and to the results of a state-of-the-art analytical model.
We demonstrate that machine learning models social interactions can directly compete with their analytical counterparts in subtle experimental observables.
arXiv Detail & Related papers (2023-02-14T05:25:03Z) - CNN-Based Action Recognition and Pose Estimation for Classifying Animal
Behavior from Videos: A Survey [0.0]
Action recognition, classifying activities performed by one or more subjects in a trimmed video, forms the basis of many techniques.
Deep learning models for human action recognition have progressed over the last decade.
Recent interest in research that incorporates deep learning-based action recognition for classification has increased.
arXiv Detail & Related papers (2023-01-15T20:54:44Z) - Review on Social Behavior Analysis of Laboratory Animals: From
Methodologies to Applications [0.0]
We explore a variety of behaviour detection algorithms, covering traditional vision methods, statistical methods and deep learning methods.
The objective of this work is to provide a thorough investigation of related work, furnishing biologists with a scratch of efficient animal behaviour detection methods.
arXiv Detail & Related papers (2022-06-25T13:40:35Z) - Going Deeper than Tracking: a Survey of Computer-Vision Based
Recognition of Animal Pain and Affective States [1.993938356023085]
An increasing number of works go 'deeper' than tracking, and address automated recognition of animals' internal states such as emotions and pain.
This paper provides a comprehensive survey of computer vision-based research on recognition of affective states and pain in animals.
arXiv Detail & Related papers (2022-06-16T18:50:02Z) - Cetacean Translation Initiative: a roadmap to deciphering the
communication of sperm whales [97.41394631426678]
Recent research showed the promise of machine learning tools for analyzing acoustic communication in nonhuman species.
We outline the key elements required for the collection and processing of massive bioacoustic data of sperm whales.
The technological capabilities developed are likely to yield cross-applications and advancements in broader communities investigating non-human communication and animal behavioral research.
arXiv Detail & Related papers (2021-04-17T18:39:22Z) - Affect Analysis in-the-wild: Valence-Arousal, Expressions, Action Units
and a Unified Framework [83.21732533130846]
The paper focuses on large in-the-wild databases, i.e., Aff-Wild and Aff-Wild2.
It presents the design of two classes of deep neural networks trained with these databases.
A novel multi-task and holistic framework is presented which is able to jointly learn and effectively generalize and perform affect recognition.
arXiv Detail & Related papers (2021-03-29T17:36:20Z) - Perspectives on individual animal identification from biology and
computer vision [58.81800919492064]
We review current advances of computer vision identification techniques to provide both computer scientists and biologists with an overview of the available tools.
We conclude by offering recommendations for starting an animal identification project, illustrate current limitations and propose how they might be addressed in the future.
arXiv Detail & Related papers (2021-02-28T16:50:09Z) - Muti-view Mouse Social Behaviour Recognition with Deep Graphical Model [124.26611454540813]
Social behaviour analysis of mice is an invaluable tool to assess therapeutic efficacy of neurodegenerative diseases.
Because of the potential to create rich descriptions of mouse social behaviors, the use of multi-view video recordings for rodent observations is increasingly receiving much attention.
We propose a novel multiview latent-attention and dynamic discriminative model that jointly learns view-specific and view-shared sub-structures.
arXiv Detail & Related papers (2020-11-04T18:09:58Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.