論文の概要: ReCycle: Resilient Training of Large DNNs using Pipeline Adaptation
- arxiv url: http://arxiv.org/abs/2405.14009v2
- Date: Wed, 25 Sep 2024 21:43:50 GMT
- ステータス: 処理完了
- システム内更新日: 2024-11-09 02:18:45.969996
- Title: ReCycle: Resilient Training of Large DNNs using Pipeline Adaptation
- Title(参考訳): ReCycle: パイプライン適応を用いた大規模DNNのレジリエンストレーニング
- Authors: Swapnil Gandhi, Mark Zhao, Athinagoras Skiadopoulos, Christos Kozyrakis,
- Abstract要約: ReCycleは、障害発生時の効率的なトレーニング用に設計されたシステムである。
分散トレーニングシステムに固有の機能的冗長性を活用する。
複数の障害で高いトレーニングスループットを実現していることを示す。
- 参考スコア(独自算出の注目度): 2.0181279529015925
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Training large Deep Neural Network (DNN) models requires thousands of GPUs over the course of several days or weeks. At this scale, failures are frequent and can have a big impact on training throughput. Utilizing spare GPU servers to mitigate performance loss becomes increasingly costly as model sizes grow. ReCycle is a system designed for efficient DNN training in the presence of failures, without relying on spare servers. It exploits the inherent functional redundancy in distributed training systems -- where servers across data-parallel groups store the same model parameters -- and pipeline schedule bubbles within each data-parallel group. When servers fails, ReCycle dynamically re-routes micro-batches to data-parallel peers, allowing for uninterrupted training despite multiple failures. However, this re-routing can create imbalances across pipeline stages, leading to reduced training throughput. To address this, ReCycle introduces two key optimizations that ensure re-routed micro-batches are processed within the original pipeline schedule's bubbles. First, it decouples the backward pass into two phases: one for computing gradients for the input and another for calculating gradients for the parameters. Second, it avoids synchronization across pipeline stages by staggering the optimizer step. Together, these optimizations enable adaptive pipeline schedules that minimize or even eliminate training throughput degradation during failures. We describe a prototype for ReCycle and show that it achieves high training throughput under multiple failures, outperforming recent proposals for fault-tolerant training such as Oobleck and Bamboo by up to $1.46\times$ and $1.64\times$, respectively.
- Abstract(参考訳): 大規模なDeep Neural Network(DNN)モデルのトレーニングには,数日ないし数週間にわたって数千のGPUが必要になる。
この規模では、障害は頻繁に発生し、トレーニングのスループットに大きな影響を与えます。
モデルのサイズが大きくなるにつれて、余分なGPUサーバを使用してパフォーマンス損失を軽減します。
ReCycleは、予備サーバに頼ることなく、障害発生時に効率的なDNNトレーニングのために設計されたシステムである。
データ並列グループにまたがるサーバが同じモデルパラメータを格納する分散トレーニングシステムに固有の機能的冗長性を活用し、各データ並列グループ内でバブルをパイプラインする。
サーバがフェールすると、ReCycleはマイクロバッチをデータ並列ピアに動的に再ルーティングし、複数の障害があっても未中断のトレーニングを可能にする。
しかし、この再ルーティングはパイプラインステージ間の不均衡を生じさせ、トレーニングのスループットを低下させる。
これを解決するため、ReCycleは2つの重要な最適化を導入し、再ルートされたマイクロバッチが元のパイプラインスケジュールのバブル内で確実に処理されるようにした。
1つは入力の勾配を計算するためのもので、もう1つはパラメータの勾配を計算するためのものである。
第2に、オプティマイザステップをステージングすることで、パイプラインステージ間の同期を回避する。
これらの最適化により、適応的なパイプラインスケジュールが実現され、障害時のトレーニングスループットの低下を最小化または排除できる。
我々はReCycleのプロトタイプを説明し、複数の障害下で高いトレーニングスループットを実現し、OobleckやBambooといったフォールトトレラントトレーニングの最近の提案を最大1.46\times$と1.64\times$で上回っていることを示す。
関連論文リスト
- Faster Multi-GPU Training with PPLL: A Pipeline Parallelism Framework Leveraging Local Learning [8.628231789161577]
本稿では,ローカル学習アルゴリズムを活用する新しいフレームワークPPLL(Pipeline Parallelism based on Local Learning)を提案する。
GPU間のデータ転送を管理するキューを利用することで、PPLLはシームレスなクロスGPU通信を保証する。
その結果,PPLLは従来のパイプライン並列処理と同等あるいはそれ以上の訓練速度を達成しつつ,局所的な学習手法の学習速度を大幅に向上することを示した。
論文 参考訳(メタデータ) (2024-11-19T08:09:18Z) - BitPipe: Bidirectional Interleaved Pipeline Parallelism for Accelerating Large Models Training [5.7294516069851475]
BitPipeは、大規模なモデルのトレーニングを加速するための双方向のインターリーブパイプライン並列処理である。
最新の同期手法と比較して,BitPipeはGPTスタイルとBERTスタイルのモデルのトレーニングスループットを1.05x-1.28倍向上することを示す。
論文 参考訳(メタデータ) (2024-10-25T08:08:51Z) - FusionLLM: A Decentralized LLM Training System on Geo-distributed GPUs with Adaptive Compression [55.992528247880685]
分散トレーニングは、システム設計と効率に関する重要な課題に直面します。
大規模深層ニューラルネットワーク(DNN)のトレーニング用に設計・実装された分散トレーニングシステムFusionLLMを提案する。
本システムと手法は,収束性を確保しつつ,ベースライン法と比較して1.45~9.39倍の高速化を実現可能であることを示す。
論文 参考訳(メタデータ) (2024-10-16T16:13:19Z) - Efficient Asynchronous Federated Learning with Sparsification and
Quantization [55.6801207905772]
フェデレートラーニング(FL)は、生データを転送することなく、機械学習モデルを協調的にトレーニングするために、ますます注目を集めている。
FLは一般的に、モデルトレーニングの全プロセス中にパラメータサーバーと多数のエッジデバイスを利用する。
TEASQ-Fedは、エッジデバイスを利用して、タスクに積極的に適用することで、トレーニングプロセスに非同期に参加する。
論文 参考訳(メタデータ) (2023-12-23T07:47:07Z) - Intelligence Processing Units Accelerate Neuromorphic Learning [52.952192990802345]
スパイキングニューラルネットワーク(SNN)は、エネルギー消費と遅延の観点から、桁違いに改善されている。
我々は、カスタムSNN PythonパッケージsnnTorchのIPU最適化リリースを提示する。
論文 参考訳(メタデータ) (2022-11-19T15:44:08Z) - Online Convolutional Re-parameterization [51.97831675242173]
2段階のパイプラインであるオンライン畳み込み再パラメータ化(OREPA)は、複雑なトレーニング時間ブロックを単一の畳み込みに絞ることで、巨大なトレーニングオーバーヘッドを低減することを目的としている。
最先端のre-paramモデルと比較して、OREPAはトレーニング時間のメモリコストを約70%削減し、トレーニング速度を約2倍向上させることができる。
また、オブジェクト検出とセマンティックセグメンテーションの実験を行い、下流タスクに一貫した改善を示す。
論文 参考訳(メタデータ) (2022-04-02T09:50:19Z) - Training Recommender Systems at Scale: Communication-Efficient Model and
Data Parallelism [56.78673028601739]
通信効率のよいハイブリッドトレーニングのためのDCT(Dynamic Communication Thresholding)という圧縮フレームワークを提案する。
DCTは、それぞれDPとMPの間に、少なくとも$100times$と$20times$の通信を削減します。
最先端の産業レコメンデーションモデルのエンドツーエンドのトレーニング時間を、パフォーマンスを損なうことなく、37%改善する。
論文 参考訳(メタデータ) (2020-10-18T01:44:42Z) - Procrustes: a Dataflow and Accelerator for Sparse Deep Neural Network
Training [0.5219568203653523]
我々は,まず,第1の訓練を行わず,第2の訓練を行ない,第2の訓練を行ない,第1の訓練を行ない,第1の訓練を行ない,第1の訓練を行ない,第2の訓練を行ないながら,第1の訓練を行ない,第1の訓練を行ない,第2の訓練を行ないながら、第2の訓練を行ない、第2の訓練を行ない、第2の訓練を行ない、第2の訓練を行ない、第2の訓練を行ない、第2の訓練を行なう。
最先端のDNNアクセラレーターをスパーストレーニングサポートなしで使用した同等の未使用モデルのトレーニングと比較すると、Procrustesは最大3.26$times$少ないエネルギーを消費し、様々なモデルにわたって最大4$times$のスピードアップを提供する。
論文 参考訳(メタデータ) (2020-09-23T07:39:55Z) - Pipelined Backpropagation at Scale: Training Large Models without
Batches [0.9580895202050946]
我々は,非同期パイプライン並列学習アルゴリズムである細粒度パイプラインバックプロパゲーションの小型バッチの利用を評価した。
適切な正規化と小さなバッチサイズは、トレーニングにも役立ちます。
論文 参考訳(メタデータ) (2020-03-25T22:26:28Z) - Joint Parameter-and-Bandwidth Allocation for Improving the Efficiency of
Partitioned Edge Learning [73.82875010696849]
機械学習アルゴリズムは、人工知能(AI)モデルをトレーニングするために、ネットワークエッジにデプロイされる。
本稿では,パラメータ(計算負荷)割り当てと帯域幅割り当ての新しい共同設計に焦点を当てる。
論文 参考訳(メタデータ) (2020-03-10T05:52:15Z) - Pipelined Training with Stale Weights of Deep Convolutional Neural
Networks [0.1921787217122713]
パイプライン化バックプロパゲーション方式の統計的効率と性能に及ぼす固定重みの影響について検討する。
パイプライニングがネットワークの初期の層に限られている場合、固定重み付きトレーニングが収束し、同じ精度のモデルが得られることを示す。
本稿では,パイプライン型と非パイプライン型を併用したハイブリッドスキームを提案する。
論文 参考訳(メタデータ) (2019-12-29T15:28:13Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。