ABI Approach: Automatic Bias Identification in Decision-Making Under Risk based in an Ontology of Behavioral Economics
- URL: http://arxiv.org/abs/2405.14067v1
- Date: Wed, 22 May 2024 23:53:46 GMT
- Title: ABI Approach: Automatic Bias Identification in Decision-Making Under Risk based in an Ontology of Behavioral Economics
- Authors: Eduardo da C. Ramos, Maria Luiza M. Campos, Fernanda BaiĆ£o,
- Abstract summary: Risk seeking preferences for losses, driven by biases such as loss aversion, pose challenges and can result in severe negative consequences.
This research introduces the ABI approach, a novel solution designed to support organizational decision-makers by automatically identifying and explaining risk seeking preferences.
- Score: 46.57327530703435
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Organizational decision-making is crucial for success, yet cognitive biases can significantly affect risk preferences, leading to suboptimal outcomes. Risk seeking preferences for losses, driven by biases such as loss aversion, pose challenges and can result in severe negative consequences, including financial losses. This research introduces the ABI approach, a novel solution designed to support organizational decision-makers by automatically identifying and explaining risk seeking preferences during decision-making. This research makes a novel contribution by automating the identification and explanation of risk seeking preferences using Cumulative Prospect theory (CPT) from Behavioral Economics. The ABI approach transforms theoretical insights into actionable, real-time guidance, making them accessible to a broader range of organizations and decision-makers without requiring specialized personnel. By contextualizing CPT concepts into business language, the approach facilitates widespread adoption and enhances decision-making processes with deep behavioral insights. Our systematic literature review identified significant gaps in existing methods, especially the lack of automated solutions with a concrete mechanism for automatically identifying risk seeking preferences, and the absence of formal knowledge representation, such as ontologies, for identifying and explaining the risk preferences. The ABI Approach addresses these gaps, offering a significant contribution to decision-making research and practice. Furthermore, it enables automatic collection of historical decision data with risk preferences, providing valuable insights for enhancing strategic management and long-term organizational performance. An experiment provided preliminary evidence on its effectiveness in helping decision-makers recognize their risk seeking preferences during decision-making in the loss domain.
Related papers
- Towards Objective and Unbiased Decision Assessments with LLM-Enhanced Hierarchical Attention Networks [6.520709313101523]
This work investigates cognitive bias identification in high-stake decision making process by human experts.
We propose bias-aware AI-augmented workflow that surpass human judgment.
In our experiments, both the proposed model and the agentic workflow significantly improves on both human judgment and alternative models.
arXiv Detail & Related papers (2024-11-13T10:42:11Z) - KnowPO: Knowledge-aware Preference Optimization for Controllable Knowledge Selection in Retrieval-Augmented Language Models [14.057527352653787]
We propose a Knowledge-aware Preference Optimization strategy, dubbed KnowPO, aimed at achieving adaptive knowledge selection.
We show that KnowPO outperforms previous methods for handling knowledge conflicts by over 37%.
arXiv Detail & Related papers (2024-08-06T16:55:54Z) - Bridging the gap: Towards an Expanded Toolkit for AI-driven Decision-Making in the Public Sector [6.693502127460251]
AI-driven decision-making systems are becoming instrumental in the public sector, with applications spanning areas like criminal justice, social welfare, financial fraud detection, and public health.
These systems face the challenge of aligning machine learning (ML) models with the complex realities of public sector decision-making.
We examine five key challenges where misalignment can occur, including distribution shifts, label bias, the influence of past decision-making on the data side, as well as competing objectives and human-in-the-loop on the model output side.
arXiv Detail & Related papers (2023-10-29T17:44:48Z) - Risk-reducing design and operations toolkit: 90 strategies for managing
risk and uncertainty in decision problems [65.268245109828]
This paper develops a catalog of such strategies and develops a framework for them.
It argues that they provide an efficient response to decision problems that are seemingly intractable due to high uncertainty.
It then proposes a framework to incorporate them into decision theory using multi-objective optimization.
arXiv Detail & Related papers (2023-09-06T16:14:32Z) - On solving decision and risk management problems subject to uncertainty [91.3755431537592]
Uncertainty is a pervasive challenge in decision and risk management.
This paper develops a systematic understanding of such strategies, determine their range of application, and develop a framework to better employ them.
arXiv Detail & Related papers (2023-01-18T19:16:23Z) - Deep Learning for Systemic Risk Measures [3.274367403737527]
The aim of this paper is to study a new methodological framework for systemic risk measures.
Under this new framework, systemic risk measures can be interpreted as the minimal amount of cash that secures the aggregated system.
Deep learning is increasingly receiving attention in financial modelings and risk management.
arXiv Detail & Related papers (2022-07-02T05:01:19Z) - Inverse Online Learning: Understanding Non-Stationary and Reactionary
Policies [79.60322329952453]
We show how to develop interpretable representations of how agents make decisions.
By understanding the decision-making processes underlying a set of observed trajectories, we cast the policy inference problem as the inverse to this online learning problem.
We introduce a practical algorithm for retrospectively estimating such perceived effects, alongside the process through which agents update them.
Through application to the analysis of UNOS organ donation acceptance decisions, we demonstrate that our approach can bring valuable insights into the factors that govern decision processes and how they change over time.
arXiv Detail & Related papers (2022-03-14T17:40:42Z) - Leveraging Expert Consistency to Improve Algorithmic Decision Support [62.61153549123407]
We explore the use of historical expert decisions as a rich source of information that can be combined with observed outcomes to narrow the construct gap.
We propose an influence function-based methodology to estimate expert consistency indirectly when each case in the data is assessed by a single expert.
Our empirical evaluation, using simulations in a clinical setting and real-world data from the child welfare domain, indicates that the proposed approach successfully narrows the construct gap.
arXiv Detail & Related papers (2021-01-24T05:40:29Z) - Inverse Active Sensing: Modeling and Understanding Timely
Decision-Making [111.07204912245841]
We develop a framework for the general setting of evidence-based decision-making under endogenous, context-dependent time pressure.
We demonstrate how it enables modeling intuitive notions of surprise, suspense, and optimality in decision strategies.
arXiv Detail & Related papers (2020-06-25T02:30:45Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.