Learning to Transform Dynamically for Better Adversarial Transferability
- URL: http://arxiv.org/abs/2405.14077v2
- Date: Wed, 24 Jul 2024 07:51:18 GMT
- Title: Learning to Transform Dynamically for Better Adversarial Transferability
- Authors: Rongyi Zhu, Zeliang Zhang, Susan Liang, Zhuo Liu, Chenliang Xu,
- Abstract summary: Adversarial examples, crafted by adding perturbations imperceptible to humans, can deceive neural networks.
We introduce a novel approach named Learning to Transform (L2T)
L2T increases the diversity of transformed images by selecting the optimal combination of operations from a pool of candidates.
- Score: 32.267484632957576
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Adversarial examples, crafted by adding perturbations imperceptible to humans, can deceive neural networks. Recent studies identify the adversarial transferability across various models, \textit{i.e.}, the cross-model attack ability of adversarial samples. To enhance such adversarial transferability, existing input transformation-based methods diversify input data with transformation augmentation. However, their effectiveness is limited by the finite number of available transformations. In our study, we introduce a novel approach named Learning to Transform (L2T). L2T increases the diversity of transformed images by selecting the optimal combination of operations from a pool of candidates, consequently improving adversarial transferability. We conceptualize the selection of optimal transformation combinations as a trajectory optimization problem and employ a reinforcement learning strategy to effectively solve the problem. Comprehensive experiments on the ImageNet dataset, as well as practical tests with Google Vision and GPT-4V, reveal that L2T surpasses current methodologies in enhancing adversarial transferability, thereby confirming its effectiveness and practical significance. The code is available at https://github.com/RongyiZhu/L2T.
Related papers
- GE-AdvGAN: Improving the transferability of adversarial samples by
gradient editing-based adversarial generative model [69.71629949747884]
Adversarial generative models, such as Generative Adversarial Networks (GANs), are widely applied for generating various types of data.
In this work, we propose a novel algorithm named GE-AdvGAN to enhance the transferability of adversarial samples.
arXiv Detail & Related papers (2024-01-11T16:43:16Z) - OT-Attack: Enhancing Adversarial Transferability of Vision-Language
Models via Optimal Transport Optimization [65.57380193070574]
Vision-language pre-training models are vulnerable to multi-modal adversarial examples.
Recent works have indicated that leveraging data augmentation and image-text modal interactions can enhance the transferability of adversarial examples.
We propose an Optimal Transport-based Adversarial Attack, dubbed OT-Attack.
arXiv Detail & Related papers (2023-12-07T16:16:50Z) - X-Transfer: A Transfer Learning-Based Framework for GAN-Generated Fake
Image Detection [33.31312811230408]
misuse of GANs for generating deceptive images, such as face replacement, raises significant security concerns.
This paper introduces a novel GAN-generated image detection algorithm called X-Transfer.
It enhances transfer learning by utilizing two neural networks that employ interleaved parallel gradient transmission.
arXiv Detail & Related papers (2023-10-07T01:23:49Z) - Improving the Transferability of Adversarial Examples with Arbitrary
Style Transfer [32.644062141738246]
A style transfer network can alter the distribution of low-level visual features in an image while preserving semantic content for humans.
We propose a novel attack method named Style Transfer Method (STM) that utilizes a proposed arbitrary style transfer network to transform the images into different domains.
Our proposed method can significantly improve the adversarial transferability on either normally trained models or adversarially trained models.
arXiv Detail & Related papers (2023-08-21T09:58:13Z) - Frozen Overparameterization: A Double Descent Perspective on Transfer
Learning of Deep Neural Networks [27.17697714584768]
We study the generalization behavior of transfer learning of deep neural networks (DNNs)
We show that the test error evolution during the target training has a more significant double descent effect when the target training dataset is sufficiently large.
Also, we show that the double descent phenomenon may make a transfer from a less related source task better than a transfer from a more related source task.
arXiv Detail & Related papers (2022-11-20T20:26:23Z) - Adversarial and Random Transformations for Robust Domain Adaptation and
Generalization [9.995765847080596]
We show that by simply applying consistency training with random data augmentation, state-of-the-art results on domain adaptation (DA) and generalization (DG) can be obtained.
The combined adversarial and random transformations based method outperforms the state-of-the-art on multiple DA and DG benchmark datasets.
arXiv Detail & Related papers (2022-11-13T02:10:13Z) - Deep invariant networks with differentiable augmentation layers [87.22033101185201]
Methods for learning data augmentation policies require held-out data and are based on bilevel optimization problems.
We show that our approach is easier and faster to train than modern automatic data augmentation techniques.
arXiv Detail & Related papers (2022-02-04T14:12:31Z) - Adaptive Image Transformations for Transfer-based Adversarial Attack [73.74904401540743]
We propose a novel architecture, called Adaptive Image Transformation Learner (AITL)
Our elaborately designed learner adaptively selects the most effective combination of image transformations specific to the input image.
Our method significantly improves the attack success rates on both normally trained models and defense models under various settings.
arXiv Detail & Related papers (2021-11-27T08:15:44Z) - Latent-Optimized Adversarial Neural Transfer for Sarcasm Detection [50.29565896287595]
We apply transfer learning to exploit common datasets for sarcasm detection.
We propose a generalized latent optimization strategy that allows different losses to accommodate each other.
In particular, we achieve 10.02% absolute performance gain over the previous state of the art on the iSarcasm dataset.
arXiv Detail & Related papers (2021-04-19T13:07:52Z) - Towards Accurate Knowledge Transfer via Target-awareness Representation
Disentanglement [56.40587594647692]
We propose a novel transfer learning algorithm, introducing the idea of Target-awareness REpresentation Disentanglement (TRED)
TRED disentangles the relevant knowledge with respect to the target task from the original source model and used as a regularizer during fine-tuning the target model.
Experiments on various real world datasets show that our method stably improves the standard fine-tuning by more than 2% in average.
arXiv Detail & Related papers (2020-10-16T17:45:08Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.