Improved Canonicalization for Model Agnostic Equivariance
- URL: http://arxiv.org/abs/2405.14089v1
- Date: Thu, 23 May 2024 01:34:12 GMT
- Title: Improved Canonicalization for Model Agnostic Equivariance
- Authors: Siba Smarak Panigrahi, Arnab Kumar Mondal,
- Abstract summary: Building equivariant models using traditional methods requires designing equivariant versions of existing models and training them from scratch.
We propose a new method that employs any non-equivariant network for canonicalization.
Our method uses contrastive learning to efficiently learn a unique canonical orientation and offers more flexibility for the choice of canonicalization network.
- Score: 6.783232060611113
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: This work introduces a novel approach to achieving architecture-agnostic equivariance in deep learning, particularly addressing the limitations of traditional equivariant architectures and the inefficiencies of the existing architecture-agnostic methods. Building equivariant models using traditional methods requires designing equivariant versions of existing models and training them from scratch, a process that is both impractical and resource-intensive. Canonicalization has emerged as a promising alternative for inducing equivariance without altering model architecture, but it suffers from the need for highly expressive and expensive equivariant networks to learn canonical orientations accurately. We propose a new method that employs any non-equivariant network for canonicalization. Our method uses contrastive learning to efficiently learn a unique canonical orientation and offers more flexibility for the choice of canonicalization network. We empirically demonstrate that this approach outperforms existing methods in achieving equivariance for large pretrained models and significantly speeds up the canonicalization process, making it up to 2 times faster.
Related papers
- Approximately Equivariant Neural Processes [47.14384085714576]
We consider the use of approximately equivariant architectures in neural processes.
We demonstrate the effectiveness of our approach on a number of synthetic and real-world regression experiments.
arXiv Detail & Related papers (2024-06-19T12:17:14Z) - A Canonicalization Perspective on Invariant and Equivariant Learning [54.44572887716977]
We introduce a canonicalization perspective that provides an essential and complete view of the design of frames.
We show that there exists an inherent connection between frames and canonical forms.
We design novel frames for eigenvectors that are strictly superior to existing methods.
arXiv Detail & Related papers (2024-05-28T17:22:15Z) - Equivariant Adaptation of Large Pretrained Models [20.687626756753563]
We show that a canonicalization network can effectively be used to make a large pretrained network equivariant.
Using dataset-dependent priors to inform the canonicalization function, we are able to make large pretrained models equivariant while maintaining their performance.
arXiv Detail & Related papers (2023-10-02T21:21:28Z) - Federated Variational Inference Methods for Structured Latent Variable
Models [1.0312968200748118]
Federated learning methods enable model training across distributed data sources without data leaving their original locations.
We present a general and elegant solution based on structured variational inference, widely used in Bayesian machine learning.
We also provide a communication-efficient variant analogous to the canonical FedAvg algorithm.
arXiv Detail & Related papers (2023-02-07T08:35:04Z) - Equivariance with Learned Canonicalization Functions [77.32483958400282]
We show that learning a small neural network to perform canonicalization is better than using predefineds.
Our experiments show that learning the canonicalization function is competitive with existing techniques for learning equivariant functions across many tasks.
arXiv Detail & Related papers (2022-11-11T21:58:15Z) - Slimmable Domain Adaptation [112.19652651687402]
We introduce a simple framework, Slimmable Domain Adaptation, to improve cross-domain generalization with a weight-sharing model bank.
Our framework surpasses other competing approaches by a very large margin on multiple benchmarks.
arXiv Detail & Related papers (2022-06-14T06:28:04Z) - Stabilizing Equilibrium Models by Jacobian Regularization [151.78151873928027]
Deep equilibrium networks (DEQs) are a new class of models that eschews traditional depth in favor of finding the fixed point of a single nonlinear layer.
We propose a regularization scheme for DEQ models that explicitly regularizes the Jacobian of the fixed-point update equations to stabilize the learning of equilibrium models.
We show that this regularization adds only minimal computational cost, significantly stabilizes the fixed-point convergence in both forward and backward passes, and scales well to high-dimensional, realistic domains.
arXiv Detail & Related papers (2021-06-28T00:14:11Z) - Exploring Complementary Strengths of Invariant and Equivariant
Representations for Few-Shot Learning [96.75889543560497]
In many real-world problems, collecting a large number of labeled samples is infeasible.
Few-shot learning is the dominant approach to address this issue, where the objective is to quickly adapt to novel categories in presence of a limited number of samples.
We propose a novel training mechanism that simultaneously enforces equivariance and invariance to a general set of geometric transformations.
arXiv Detail & Related papers (2021-03-01T21:14:33Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.