Newton Informed Neural Operator for Computing Multiple Solutions of Nonlinear Partials Differential Equations
- URL: http://arxiv.org/abs/2405.14096v1
- Date: Thu, 23 May 2024 01:52:54 GMT
- Title: Newton Informed Neural Operator for Computing Multiple Solutions of Nonlinear Partials Differential Equations
- Authors: Wenrui Hao, Xinliang Liu, Yahong Yang,
- Abstract summary: We propose a novel approach called the Newton Informed Neural Operator to tackle nonlinearities.
Our method combines classical Newton methods, addressing well-posed problems, and efficiently learns multiple solutions in a single learning process.
- Score: 3.8916312075738273
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Solving nonlinear partial differential equations (PDEs) with multiple solutions using neural networks has found widespread applications in various fields such as physics, biology, and engineering. However, classical neural network methods for solving nonlinear PDEs, such as Physics-Informed Neural Networks (PINN), Deep Ritz methods, and DeepONet, often encounter challenges when confronted with the presence of multiple solutions inherent in the nonlinear problem. These methods may encounter ill-posedness issues. In this paper, we propose a novel approach called the Newton Informed Neural Operator, which builds upon existing neural network techniques to tackle nonlinearities. Our method combines classical Newton methods, addressing well-posed problems, and efficiently learns multiple solutions in a single learning process while requiring fewer supervised data points compared to existing neural network methods.
Related papers
- Mechanistic Neural Networks for Scientific Machine Learning [58.99592521721158]
We present Mechanistic Neural Networks, a neural network design for machine learning applications in the sciences.
It incorporates a new Mechanistic Block in standard architectures to explicitly learn governing differential equations as representations.
Central to our approach is a novel Relaxed Linear Programming solver (NeuRLP) inspired by a technique that reduces solving linear ODEs to solving linear programs.
arXiv Detail & Related papers (2024-02-20T15:23:24Z) - Solutions to Elliptic and Parabolic Problems via Finite Difference Based Unsupervised Small Linear Convolutional Neural Networks [1.124958340749622]
We propose a fully unsupervised approach, requiring no training data, to estimate finite difference solutions for PDEs directly via small linear convolutional neural networks.
Our proposed approach uses substantially fewer parameters than similar finite difference-based approaches while also demonstrating comparable accuracy to the true solution for several selected elliptic and parabolic problems.
arXiv Detail & Related papers (2023-11-01T03:15:10Z) - A Stable and Scalable Method for Solving Initial Value PDEs with Neural
Networks [52.5899851000193]
We develop an ODE based IVP solver which prevents the network from getting ill-conditioned and runs in time linear in the number of parameters.
We show that current methods based on this approach suffer from two key issues.
First, following the ODE produces an uncontrolled growth in the conditioning of the problem, ultimately leading to unacceptably large numerical errors.
arXiv Detail & Related papers (2023-04-28T17:28:18Z) - Unsupervised Legendre-Galerkin Neural Network for Stiff Partial
Differential Equations [9.659504024299896]
We propose an unsupervised machine learning algorithm based on the Legendre-Galerkin neural network to find an accurate approximation to the solution of different types of PDEs.
The proposed neural network is applied to the general 1D and 2D PDEs as well as singularly perturbed PDEs that possess boundary layer behavior.
arXiv Detail & Related papers (2022-07-21T00:47:47Z) - Fast Neural Network based Solving of Partial Differential Equations [0.8460698440162889]
We present a novel method for using Neural Networks (NNs) for finding solutions to a class of Partial Differential Equations (PDEs)
Our method builds on recent advances in Neural Radiance Field research (NeRFs) and allows for a NN to converge to a PDE solution much faster than classic Physically Informed Neural Network (PINNs) approaches.
arXiv Detail & Related papers (2022-05-18T15:02:01Z) - Physics informed neural networks for continuum micromechanics [68.8204255655161]
Recently, physics informed neural networks have successfully been applied to a broad variety of problems in applied mathematics and engineering.
Due to the global approximation, physics informed neural networks have difficulties in displaying localized effects and strong non-linear solutions by optimization.
It is shown, that the domain decomposition approach is able to accurately resolve nonlinear stress, displacement and energy fields in heterogeneous microstructures obtained from real-world $mu$CT-scans.
arXiv Detail & Related papers (2021-10-14T14:05:19Z) - Characterizing possible failure modes in physics-informed neural
networks [55.83255669840384]
Recent work in scientific machine learning has developed so-called physics-informed neural network (PINN) models.
We demonstrate that, while existing PINN methodologies can learn good models for relatively trivial problems, they can easily fail to learn relevant physical phenomena even for simple PDEs.
We show that these possible failure modes are not due to the lack of expressivity in the NN architecture, but that the PINN's setup makes the loss landscape very hard to optimize.
arXiv Detail & Related papers (2021-09-02T16:06:45Z) - Inverse Problem of Nonlinear Schr\"odinger Equation as Learning of
Convolutional Neural Network [5.676923179244324]
It is shown that one can obtain a relatively accurate estimate of the considered parameters using the proposed method.
It provides a natural framework in inverse problems of partial differential equations with deep learning.
arXiv Detail & Related papers (2021-07-19T02:54:37Z) - Physics-informed attention-based neural network for solving non-linear
partial differential equations [6.103365780339364]
Physics-Informed Neural Networks (PINNs) have enabled significant improvements in modelling physical processes.
PINNs are based on simple architectures, and learn the behavior of complex physical systems by optimizing the network parameters to minimize the residual of the underlying PDE.
Here, we address the question of which network architectures are best suited to learn the complex behavior of non-linear PDEs.
arXiv Detail & Related papers (2021-05-17T14:29:08Z) - Conditional physics informed neural networks [85.48030573849712]
We introduce conditional PINNs (physics informed neural networks) for estimating the solution of classes of eigenvalue problems.
We show that a single deep neural network can learn the solution of partial differential equations for an entire class of problems.
arXiv Detail & Related papers (2021-04-06T18:29:14Z) - Multipole Graph Neural Operator for Parametric Partial Differential
Equations [57.90284928158383]
One of the main challenges in using deep learning-based methods for simulating physical systems is formulating physics-based data.
We propose a novel multi-level graph neural network framework that captures interaction at all ranges with only linear complexity.
Experiments confirm our multi-graph network learns discretization-invariant solution operators to PDEs and can be evaluated in linear time.
arXiv Detail & Related papers (2020-06-16T21:56:22Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.