Deep Learning for Protein-Ligand Docking: Are We There Yet?
- URL: http://arxiv.org/abs/2405.14108v5
- Date: Sun, 09 Feb 2025 21:04:47 GMT
- Title: Deep Learning for Protein-Ligand Docking: Are We There Yet?
- Authors: Alex Morehead, Nabin Giri, Jian Liu, Pawan Neupane, Jianlin Cheng,
- Abstract summary: We introduce PoseBench, the first comprehensive benchmark for broadly applicable protein-ligand docking.<n>PoseBench enables researchers to rigorously and systematically evaluate DL methods for apo-to-holo protein-ligand docking and protein-ligand structure prediction.
- Score: 5.721438704473567
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: The effects of ligand binding on protein structures and their in vivo functions carry numerous implications for modern biomedical research and biotechnology development efforts such as drug discovery. Although several deep learning (DL) methods and benchmarks designed for protein-ligand docking have recently been introduced, to date no prior works have systematically studied the behavior of the latest docking and structure prediction methods within the broadly applicable context of (1) using predicted (apo) protein structures for docking (e.g., for applicability to new proteins); (2) binding multiple (cofactor) ligands concurrently to a given target protein (e.g., for enzyme design); and (3) having no prior knowledge of binding pockets (e.g., for generalization to unknown pockets). To enable a deeper understanding of docking methods' real-world utility, we introduce PoseBench, the first comprehensive benchmark for broadly applicable protein-ligand docking. PoseBench enables researchers to rigorously and systematically evaluate DL methods for apo-to-holo protein-ligand docking and protein-ligand structure prediction using both primary ligand and multi-ligand benchmark datasets, the latter of which we introduce for the first time to the DL community. Empirically, using PoseBench, we find that (1) DL co-folding methods generally outperform comparable conventional and DL docking baselines, yet popular methods such as AlphaFold 3 are still challenged by prediction targets with novel protein sequences; (2) certain DL co-folding methods are highly sensitive to their input multiple sequence alignments, while others are not; and (3) DL methods struggle to strike a balance between structural accuracy and chemical specificity when predicting novel or multi-ligand protein targets. Code, data, tutorials, and benchmark results are available at https://github.com/BioinfoMachineLearning/PoseBench.
Related papers
- Fast and Accurate Blind Flexible Docking [79.88520988144442]
Molecular docking that predicts the bound structures of small molecules (ligands) to their protein targets plays a vital role in drug discovery.
We propose FABFlex, a fast and accurate regression-based multi-task learning model designed for realistic blind flexible docking scenarios.
arXiv Detail & Related papers (2025-02-20T07:31:13Z) - FlowDock: Geometric Flow Matching for Generative Protein-Ligand Docking and Affinity Prediction [3.8366697175402225]
FlowDock is the first deep geometric generative model that learns to map unbound (apo) structures to their bound (holo) counterparts.
FlowDock provides predicted structural confidence scores and binding affinity values with each of its generated protein-ligand complex structures.
arXiv Detail & Related papers (2024-12-14T20:54:37Z) - One-step Structure Prediction and Screening for Protein-Ligand Complexes using Multi-Task Geometric Deep Learning [6.605588716386855]
We show that LigPose can be accurately tackled with a single model, namely LigPose, based on multi-task geometric deep learning.
LigPose represents the ligand and the protein pair as a graph, with the learning of binding strength and atomic interactions as auxiliary tasks.
Experiments show LigPose achieved state-of-the-art performance on major tasks in drug research.
arXiv Detail & Related papers (2024-08-21T05:53:50Z) - ProLLM: Protein Chain-of-Thoughts Enhanced LLM for Protein-Protein Interaction Prediction [54.132290875513405]
The prediction of protein-protein interactions (PPIs) is crucial for understanding biological functions and diseases.
Previous machine learning approaches to PPI prediction mainly focus on direct physical interactions.
We propose a novel framework ProLLM that employs an LLM tailored for PPI for the first time.
arXiv Detail & Related papers (2024-03-30T05:32:42Z) - Rigid Protein-Protein Docking via Equivariant Elliptic-Paraboloid
Interface Prediction [19.73508673791042]
The study of rigid protein-protein docking plays an essential role in a variety of tasks such as drug design and protein engineering.
We propose a novel learning-based method called ElliDock, which predicts an elliptic paraboloid to represent the protein-protein docking interface.
By its design, ElliDock is independently equivariant with respect to arbitrary rotations/translations of the proteins.
arXiv Detail & Related papers (2024-01-17T05:39:03Z) - Multi-scale Iterative Refinement towards Robust and Versatile Molecular
Docking [17.28573902701018]
Molecular docking is a key computational tool utilized to predict the binding conformations of small molecules to protein targets.
We introduce DeltaDock, a robust and versatile framework designed for efficient molecular docking.
arXiv Detail & Related papers (2023-11-30T14:09:20Z) - FABind: Fast and Accurate Protein-Ligand Binding [127.7790493202716]
$mathbfFABind$ is an end-to-end model that combines pocket prediction and docking to achieve accurate and fast protein-ligand binding.
Our proposed model demonstrates strong advantages in terms of effectiveness and efficiency compared to existing methods.
arXiv Detail & Related papers (2023-10-10T16:39:47Z) - DockGame: Cooperative Games for Multimeric Rigid Protein Docking [45.970633276976045]
We introduce DockGame, a novel game-theoretic framework for docking.
We view protein docking as a cooperative game between proteins, where the final assembly structure(s) constitute stable equilibria.
On the Docking Benchmark 5.5 dataset, DockGame has much faster runtimes than traditional docking methods.
arXiv Detail & Related papers (2023-10-09T22:02:05Z) - DiffDock-PP: Rigid Protein-Protein Docking with Diffusion Models [47.73386438748902]
DiffDock-PP is a diffusion generative model that learns to translate and rotate unbound protein structures into their bound conformations.
We achieve state-of-the-art performance on DIPS with a median C-RMSD of 4.85, outperforming all considered baselines.
arXiv Detail & Related papers (2023-04-08T02:10:44Z) - Structure-informed Language Models Are Protein Designers [69.70134899296912]
We present LM-Design, a generic approach to reprogramming sequence-based protein language models (pLMs)
We conduct a structural surgery on pLMs, where a lightweight structural adapter is implanted into pLMs and endows it with structural awareness.
Experiments show that our approach outperforms the state-of-the-art methods by a large margin.
arXiv Detail & Related papers (2023-02-03T10:49:52Z) - E3Bind: An End-to-End Equivariant Network for Protein-Ligand Docking [20.266157559473342]
We propose E3Bind, an end-to-end equivariant network that iteratively updates the ligand pose.
E3Bind models the protein-ligand interaction through careful consideration of the geometric constraints in docking.
Experiments on standard benchmark datasets demonstrate the superior performance of our end-to-end trainable model.
arXiv Detail & Related papers (2022-10-12T10:25:54Z) - HelixFold-Single: MSA-free Protein Structure Prediction by Using Protein
Language Model as an Alternative [61.984700682903096]
HelixFold-Single is proposed to combine a large-scale protein language model with the superior geometric learning capability of AlphaFold2.
Our proposed method pre-trains a large-scale protein language model with thousands of millions of primary sequences.
We obtain an end-to-end differentiable model to predict the 3D coordinates of atoms from only the primary sequence.
arXiv Detail & Related papers (2022-07-28T07:30:33Z) - Independent SE(3)-Equivariant Models for End-to-End Rigid Protein
Docking [57.2037357017652]
We tackle rigid body protein-protein docking, i.e., computationally predicting the 3D structure of a protein-protein complex from the individual unbound structures.
We design a novel pairwise-independent SE(3)-equivariant graph matching network to predict the rotation and translation to place one of the proteins at the right docked position.
Our model, named EquiDock, approximates the binding pockets and predicts the docking poses using keypoint matching and alignment.
arXiv Detail & Related papers (2021-11-15T18:46:37Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.