ProLLM: Protein Chain-of-Thoughts Enhanced LLM for Protein-Protein Interaction Prediction
- URL: http://arxiv.org/abs/2405.06649v2
- Date: Fri, 12 Jul 2024 11:38:56 GMT
- Title: ProLLM: Protein Chain-of-Thoughts Enhanced LLM for Protein-Protein Interaction Prediction
- Authors: Mingyu Jin, Haochen Xue, Zhenting Wang, Boming Kang, Ruosong Ye, Kaixiong Zhou, Mengnan Du, Yongfeng Zhang,
- Abstract summary: The prediction of protein-protein interactions (PPIs) is crucial for understanding biological functions and diseases.
Previous machine learning approaches to PPI prediction mainly focus on direct physical interactions.
We propose a novel framework ProLLM that employs an LLM tailored for PPI for the first time.
- Score: 54.132290875513405
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The prediction of protein-protein interactions (PPIs) is crucial for understanding biological functions and diseases. Previous machine learning approaches to PPI prediction mainly focus on direct physical interactions, ignoring the broader context of nonphysical connections through intermediate proteins, thus limiting their effectiveness. The emergence of Large Language Models (LLMs) provides a new opportunity for addressing this complex biological challenge. By transforming structured data into natural language prompts, we can map the relationships between proteins into texts. This approach allows LLMs to identify indirect connections between proteins, tracing the path from upstream to downstream. Therefore, we propose a novel framework ProLLM that employs an LLM tailored for PPI for the first time. Specifically, we propose Protein Chain of Thought (ProCoT), which replicates the biological mechanism of signaling pathways as natural language prompts. ProCoT considers a signaling pathway as a protein reasoning process, which starts from upstream proteins and passes through several intermediate proteins to transmit biological signals to downstream proteins. Thus, we can use ProCoT to predict the interaction between upstream proteins and downstream proteins. The training of ProLLM employs the ProCoT format, which enhances the model's understanding of complex biological problems. In addition to ProCoT, this paper also contributes to the exploration of embedding replacement of protein sites in natural language prompts, and instruction fine-tuning in protein knowledge datasets. We demonstrate the efficacy of ProLLM through rigorous validation against benchmark datasets, showing significant improvement over existing methods in terms of prediction accuracy and generalizability. The code is available at: https://github.com/MingyuJ666/ProLLM.
Related papers
- Long-context Protein Language Model [76.95505296417866]
Self-supervised training of language models (LMs) has seen great success for protein sequences in learning meaningful representations and for generative drug design.
Most protein LMs are based on the Transformer architecture trained on individual proteins with short context lengths.
We propose LC-PLM based on an alternative protein LM architecture, BiMamba-S, built off selective structured state-space models.
We also introduce its graph-contextual variant, LC-PLM-G, which contextualizes protein-protein interaction graphs for a second stage of training.
arXiv Detail & Related papers (2024-10-29T16:43:28Z) - Structure-Enhanced Protein Instruction Tuning: Towards General-Purpose Protein Understanding [43.811432723460534]
We introduce Structure-Enhanced Protein Instruction Tuning (SEPIT) framework to bridge this gap.
Our approach integrates a noval structure-aware module into pLMs to inform them with structural knowledge, and then connects these enhanced pLMs to large language models (LLMs) to generate understanding of proteins.
We construct the largest and most comprehensive protein instruction dataset to date, which allows us to train and evaluate the general-purpose protein understanding model.
arXiv Detail & Related papers (2024-10-04T16:02:50Z) - ProteinGPT: Multimodal LLM for Protein Property Prediction and Structure Understanding [22.610060675922536]
We introduce ProteinGPT, a state-of-the-art multi-modal protein chat system.
ProteinGPT seamlessly integrates protein sequence and structure encoders with linear projection layers for precise representation adaptation.
We train a large-scale dataset of 132,092 proteins with annotations, and optimize the instruction-tuning process using GPT-4o.
Experiments show that ProteinGPT can produce promising responses to proteins and their corresponding questions.
arXiv Detail & Related papers (2024-08-21T06:16:22Z) - ProtT3: Protein-to-Text Generation for Text-based Protein Understanding [88.43323947543996]
Language Models (LMs) excel in understanding textual descriptions of proteins.
Protein Language Models (PLMs) can understand and convert protein data into high-quality representations, but struggle to process texts.
We introduce ProtT3, a framework for Protein-to-Text Generation for Text-based Protein Understanding.
arXiv Detail & Related papers (2024-05-21T08:06:13Z) - ProtLLM: An Interleaved Protein-Language LLM with Protein-as-Word Pre-Training [82.37346937497136]
We propose a versatile cross-modal large language model (LLM) for both protein-centric and protein-language tasks.
ProtLLM features a unique dynamic protein mounting mechanism, enabling it to handle complex inputs.
By developing a specialized protein vocabulary, we equip the model with the capability to predict not just natural language but also proteins from a vast pool of candidates.
arXiv Detail & Related papers (2024-02-28T01:29:55Z) - Learning Geometrically Disentangled Representations of Protein Folding
Simulations [72.03095377508856]
This work focuses on learning a generative neural network on a structural ensemble of a drug-target protein.
Model tasks involve characterizing the distinct structural fluctuations of the protein bound to various drug molecules.
Results show that our geometric learning-based method enjoys both accuracy and efficiency for generating complex structural variations.
arXiv Detail & Related papers (2022-05-20T19:38:00Z) - Structure-aware Protein Self-supervised Learning [50.04673179816619]
We propose a novel structure-aware protein self-supervised learning method to capture structural information of proteins.
In particular, a well-designed graph neural network (GNN) model is pretrained to preserve the protein structural information.
We identify the relation between the sequential information in the protein language model and the structural information in the specially designed GNN model via a novel pseudo bi-level optimization scheme.
arXiv Detail & Related papers (2022-04-06T02:18:41Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.