論文の概要: Multi-modality Regional Alignment Network for Covid X-Ray Survival Prediction and Report Generation
- arxiv url: http://arxiv.org/abs/2405.14113v1
- Date: Thu, 23 May 2024 02:41:08 GMT
- ステータス: 処理完了
- システム内更新日: 2024-05-24 19:24:51.711880
- Title: Multi-modality Regional Alignment Network for Covid X-Ray Survival Prediction and Report Generation
- Title(参考訳): 共有X線生存予測のための多モード地域アライメントネットワークとレポート生成
- Authors: Zhusi Zhong, Jie Li, John Sollee, Scott Collins, Harrison Bai, Paul Zhang, Terrence Healey, Michael Atalay, Xinbo Gao, Zhicheng Jiao,
- Abstract要約: 本研究は,放射線学報告の生成と生存予測のための説明可能なモデルであるマルチモーダル地域アライメントネットワーク(MRANet)を提案する。
MRANetは、領域固有の記述を視覚的に根拠として、完了戦略を備えた堅牢な解剖学的領域を提供する。
横断LDMアライメントは、画像からテキストへの転送プロセスを強化するために使用され、その結果、臨床詳細に富んだ文と、放射線医の説明可能性が改善された。
- 参考スコア(独自算出の注目度): 36.343753593390254
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: In response to the worldwide COVID-19 pandemic, advanced automated technologies have emerged as valuable tools to aid healthcare professionals in managing an increased workload by improving radiology report generation and prognostic analysis. This study proposes Multi-modality Regional Alignment Network (MRANet), an explainable model for radiology report generation and survival prediction that focuses on high-risk regions. By learning spatial correlation in the detector, MRANet visually grounds region-specific descriptions, providing robust anatomical regions with a completion strategy. The visual features of each region are embedded using a novel survival attention mechanism, offering spatially and risk-aware features for sentence encoding while maintaining global coherence across tasks. A cross LLMs alignment is employed to enhance the image-to-text transfer process, resulting in sentences rich with clinical detail and improved explainability for radiologist. Multi-center experiments validate both MRANet's overall performance and each module's composition within the model, encouraging further advancements in radiology report generation research emphasizing clinical interpretation and trustworthiness in AI models applied to medical studies. The code is available at https://github.com/zzs95/MRANet.
- Abstract(参考訳): 世界規模の新型コロナウイルス(COVID-19)パンデミックへの対応として、医療専門家が放射線診断レポートの生成と予後分析を改善することで、作業量の増加を管理する上で有用なツールとして、高度な自動化技術が登場した。
本研究では,高リスク領域に着目した放射線学レポート生成と生存予測のための説明可能なモデルであるマルチモダリティ地域アライメントネットワーク(MRANet)を提案する。
検出器内の空間相関を学習することにより、MRANetは領域固有の記述を視覚的にグラウンド化し、完了戦略を備えた堅牢な解剖学的領域を提供する。
各領域の視覚的特徴は、タスク間のグローバルコヒーレンスを維持しながら、文エンコーディングのための空間的およびリスク認識機能を提供する、新しいサバイバルアテンション機構を用いて埋め込む。
横断LDMアライメントは、画像からテキストへの転送プロセスを強化するために使用され、その結果、臨床詳細に富んだ文と、放射線医の説明可能性が改善された。
マルチセンター実験は、MRANetの全体的なパフォーマンスとモデル内の各モジュールの構成を検証し、医療研究に適用されたAIモデルの臨床的解釈と信頼性を強調する放射線学レポート生成研究のさらなる進歩を奨励する。
コードはhttps://github.com/zzs95/MRANet.comで入手できる。
関連論文リスト
- D-Rax: Domain-specific Radiologic assistant leveraging multi-modal data and eXpert model predictions [8.50767187405446]
ドメイン固有の対話型無線支援ツールD-Raxを提案する。
我々は胸部X線(CXR)画像の会話解析を強化し,放射線学的報告を支援する。
オープン・エンド・会話とクローズド・会話の双方において,反応の統計的に有意な改善が認められた。
論文 参考訳(メタデータ) (2024-07-02T18:43:10Z) - Large Model driven Radiology Report Generation with Clinical Quality
Reinforcement Learning [16.849933628738277]
放射線学報告生成 (RRG) は, 放射線技師の作業量削減の可能性から注目されている。
本稿では,新しいRRG法である textbfLM-RRG について紹介する。
MIMIC-CXRおよびIU-Xrayデータセットを用いた実験により,本手法が技術状況よりも優れていることを示す。
論文 参考訳(メタデータ) (2024-03-11T13:47:11Z) - HistGen: Histopathology Report Generation via Local-Global Feature Encoding and Cross-modal Context Interaction [16.060286162384536]
HistGenは、病理組織学レポート生成のための学習可能なフレームワークである。
スライド画像全体(WSI)と局所的およびグローバルな粒度からの診断レポートを整列させることで、レポート生成を促進することを目的としている。
WSIレポート生成実験の結果,提案手法は最先端モデル(SOTA)よりも大きなマージンで優れていた。
論文 参考訳(メタデータ) (2024-03-08T15:51:43Z) - Radiology Report Generation Using Transformers Conditioned with
Non-imaging Data [55.17268696112258]
本稿では,胸部X線画像と関連する患者の人口統計情報を統合したマルチモーダルトランスフォーマーネットワークを提案する。
提案ネットワークは、畳み込みニューラルネットワークを用いて、CXRから視覚的特徴を抽出し、その視覚的特徴と患者の人口統計情報のセマンティックテキスト埋め込みを組み合わせたトランスフォーマーベースのエンコーダデコーダネットワークである。
論文 参考訳(メタデータ) (2023-11-18T14:52:26Z) - ChatRadio-Valuer: A Chat Large Language Model for Generalizable
Radiology Report Generation Based on Multi-institution and Multi-system Data [115.0747462486285]
ChatRadio-Valuerは、一般化可能な表現を学習する自動放射線学レポート生成のための調整されたモデルである。
本研究で利用した臨床データセットは,textbf332,673の顕著な総計を含む。
ChatRadio-Valuerは、最先端のモデル、特にChatGPT(GPT-3.5-Turbo)やGPT-4などより一貫して優れている。
論文 参考訳(メタデータ) (2023-10-08T17:23:17Z) - XrayGPT: Chest Radiographs Summarization using Medical Vision-Language
Models [60.437091462613544]
我々は,会話型医療ビジョン言語モデルであるXrayGPTを紹介する。
胸部X線写真に関するオープンエンドの質問を分析し、答えることができる。
自由テキストラジオグラフィーレポートから217kの対話的かつ高品質な要約を生成する。
論文 参考訳(メタデータ) (2023-06-13T17:59:59Z) - Self adaptive global-local feature enhancement for radiology report
generation [10.958641951927817]
グローバル・解剖学的領域の特徴を動的に融合して多粒性放射線学レポートを生成する新しいフレームワーク AGFNet を提案する。
まず,入力胸部X線(CXR)の解剖学的特徴と大域的特徴を抽出する。
そして,領域の特徴とグローバルな特徴を入力として,提案した自己適応型核融合ゲートモジュールは動的に多粒性情報を融合することができる。
最後に、キャプション生成装置は、多粒性特徴により放射線学レポートを生成する。
論文 参考訳(メタデータ) (2022-11-21T11:50:42Z) - Cross-modal Memory Networks for Radiology Report Generation [30.13916304931662]
ラジオロジーレポート生成のためのエンコーダデコーダフレームワークを強化するために,クロスモーダルメモリネットワーク(CMN)を提案する。
本モデルでは,放射線画像やテキストからの情報の整合性が向上し,臨床指標の精度向上に寄与する。
論文 参考訳(メタデータ) (2022-04-28T02:32:53Z) - Generative Residual Attention Network for Disease Detection [51.60842580044539]
本稿では, 条件付き生成逆学習を用いたX線疾患発生のための新しいアプローチを提案する。
我々は,患者の身元を保存しながら,対象領域に対応する放射線画像を生成する。
次に、ターゲット領域で生成されたX線画像を用いてトレーニングを増強し、検出性能を向上させる。
論文 参考訳(メタデータ) (2021-10-25T14:15:57Z) - Auxiliary Signal-Guided Knowledge Encoder-Decoder for Medical Report
Generation [107.3538598876467]
放射線技師の動作パターンを模倣する補助信号誘導知識デコーダ(ASGK)を提案する。
ASGKは、内的特徴融合と外部医療言語情報を統合して、医療知識の伝達と学習をガイドする。
論文 参考訳(メタデータ) (2020-06-06T01:00:15Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。