論文の概要: Super Tiny Language Models
- arxiv url: http://arxiv.org/abs/2405.14159v2
- Date: Wed, 26 Jun 2024 08:41:06 GMT
- ステータス: 処理完了
- システム内更新日: 2024-06-27 18:25:45.744054
- Title: Super Tiny Language Models
- Title(参考訳): 超ティニー言語モデル
- Authors: Dylan Hillier, Leon Guertler, Cheston Tan, Palaash Agrawal, Chen Ruirui, Bobby Cheng,
- Abstract要約: 本稿では,スーパーティニー言語モデル(STLM)に着目した一連の研究成果を紹介する。
我々は,プーリング機構によるバイトレベルのトークン化,ウェイトタイリング,効率的なトレーニング戦略など,革新的な手法を探求する。
我々の最終的な目標は、広範囲のアプリケーションに対して、高性能な言語モデルをよりアクセスしやすく、実用的なものにすることです。
- 参考スコア(独自算出の注目度): 3.8353434814956517
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The rapid advancement of large language models (LLMs) has led to significant improvements in natural language processing but also poses challenges due to their high computational and energy demands. This paper introduces a series of research efforts focused on Super Tiny Language Models (STLMs), which aim to deliver high performance with significantly reduced parameter counts. We explore innovative techniques such as byte-level tokenization with a pooling mechanism, weight tying, and efficient training strategies. These methods aim to significantly reduce reduce the parameter count compared to traditional models -- in future works, we aim to build on these in a way that maintains and improves upon the performance of base transformer models. This series of papers will explore into various subproblems, including tokenizer-free models, self-play based training, and alternative training objectives. We will target models with 10M, 50M, and 100M parameters. Our ultimate goal is to make high-performance language models more accessible and practical for a wide range of applications.
- Abstract(参考訳): 大規模言語モデル(LLM)の急速な進歩は、自然言語処理の大幅な改善につながったが、高い計算量とエネルギー需要のため、課題も生じている。
本稿では,パラメータ数を大幅に削減して高い性能を実現することを目的とした,Super Tiny Language Models (STLM) に着目した一連の研究成果を紹介する。
我々は,プーリング機構によるバイトレベルのトークン化,ウェイトタイリング,効率的なトレーニング戦略など,革新的な手法を探求する。
これらの手法は従来のモデルと比較してパラメータ数を大幅に削減することを目的としています -- 今後の研究では、ベーストランスフォーマーモデルの性能を維持・改善する手段として、これらの上に構築することを目的としています。
この一連の論文は、トークンフリーモデル、セルフプレイベースのトレーニング、代替的なトレーニング目標など、さまざまなサブプロブレムについて検討する。
10M、50M、100Mパラメータのモデルをターゲットにします。
我々の最終的な目標は、広範囲のアプリケーションに対して、高性能な言語モデルをよりアクセスしやすく、実用的なものにすることです。
関連論文リスト
- Retrieval-based Knowledge Transfer: An Effective Approach for Extreme
Large Language Model Compression [64.07696663255155]
大規模事前学習型言語モデル(LLM)は、様々な自然言語処理(NLP)タスクにおいて例外的な性能を示した。
しかし、これらのモデルの巨大なサイズは、現実世界のアプリケーションに展開する上で大きな課題をもたらします。
本稿では,LLMの知識を極めて小規模なモデルに効果的に伝達するRetrieval-based Knowledge Transfer (RetriKT)と呼ばれる新しい圧縮パラダイムを提案する。
論文 参考訳(メタデータ) (2023-10-24T07:58:20Z) - eP-ALM: Efficient Perceptual Augmentation of Language Models [70.47962271121389]
本稿では,既存モデルの適応性を向上するための直接的な取り組みを提案し,認識を伴う言語モデルの拡張を提案する。
視覚言語タスクに事前訓練されたモデルを適用するための既存のアプローチは、その効率を妨げているいくつかの重要なコンポーネントに依存している。
総パラメータの99%以上を凍結し,1つの直線射影層のみをトレーニングし,1つのトレーニング可能なトークンのみを予測することにより,我々のアプローチ(eP-ALM)は,VQAとCaptioningの他のベースラインよりも有意に優れていることを示す。
論文 参考訳(メタデータ) (2023-03-20T19:20:34Z) - Legal-Tech Open Diaries: Lesson learned on how to develop and deploy
light-weight models in the era of humongous Language Models [10.086015702323971]
私たちは、現代の法律技術スタートアップのR&Dグループのステップに従い、モデル開発とデプロイメントに関する重要な洞察を示します。
我々は、契約書や規制書に適合する複数のドメイン固有の多言語LMを事前訓練することで、ゼロから始める。
5つのダウンストリームタスクからなる半公的な半私的法定ベンチマークにおいて,そのようなモデルのベンチマーク結果を示す。
論文 参考訳(メタデータ) (2022-10-24T10:08:59Z) - METRO: Efficient Denoising Pretraining of Large Scale Autoencoding
Language Models with Model Generated Signals [151.3601429216877]
本稿では,補助モデルにより生成された学習信号を用いて,大規模自動符号化言語モデルの事前学習を行う。
我々は「モデル生成dEnoising TRaining Objective」(METRO)というレシピを提案する。
結果、最大54億のパラメータからなるMETRO-LMは、GLUE、SuperGLUE、SQuADベンチマークで新しい最先端を実現する。
論文 参考訳(メタデータ) (2022-04-13T21:39:15Z) - PaLM: Scaling Language Modeling with Pathways [180.69584031908113]
我々は,パスウェイズ言語モデル PaLM と呼ばれるトランスフォーマー言語モデルを用いて,540ビリオンのパラメータを訓練した。
我々はPathwaysという新しいMLシステムを用いて,6144 TPU v4チップ上でPaLMをトレーニングした。
数百の言語理解および生成ベンチマーク上で、最先端の数発の学習結果を達成し、スケーリングの継続的なメリットを実証する。
論文 参考訳(メタデータ) (2022-04-05T16:11:45Z) - MoEfication: Conditional Computation of Transformer Models for Efficient
Inference [66.56994436947441]
トランスフォーマーベースの事前学習言語モデルは、パラメータ容量が大きいため、ほとんどのNLPタスクにおいて優れた性能を実現することができるが、計算コストも大きい。
スパースアクティベーション現象に基づく条件計算により,大規模モデル推論を高速化する。
そこで本研究では,モデルサイズが等しいMoE(Mix-of-experts)バージョン,すなわちMoEficationに変換することを提案する。
論文 参考訳(メタデータ) (2021-10-05T02:14:38Z) - Scalable and Efficient MoE Training for Multitask Multilingual Models [55.987536562357086]
我々は,MoEモデルを数兆のパラメータに効率的にスケールできるシステムを開発した。
また,MoEサンプルの効率を向上させるための新たなトレーニング手法を提案し,時間効率を向上させるために専門家の刈り取り戦略を活用する。
50言語で100億のパラメータで訓練されたモデルは、機械翻訳(MT)および多言語自然言語生成タスクにおける最先端のパフォーマンスを達成することができる。
論文 参考訳(メタデータ) (2021-09-22T00:57:46Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。