論文の概要: Reassessing Evaluation Functions in Algorithmic Recourse: An Empirical Study from a Human-Centered Perspective
- arxiv url: http://arxiv.org/abs/2405.14264v1
- Date: Thu, 23 May 2024 07:43:24 GMT
- ステータス: 処理完了
- システム内更新日: 2024-05-24 18:24:17.571605
- Title: Reassessing Evaluation Functions in Algorithmic Recourse: An Empirical Study from a Human-Centered Perspective
- Title(参考訳): アルゴリズム・リコースにおける評価機能の再評価--人間中心の視点からの実証的研究
- Authors: Tomu Tominaga, Naomi Yamashita, Takeshi Kurashima,
- Abstract要約: アルゴリズム・リコースの基礎的前提を批判的に検討する。
参加者のリコース受け入れは,リコース距離と相関しないことがわかった。
これらの結果は、アルゴリズム的リコース研究の一般的な仮定に疑問を投げかけた。
- 参考スコア(独自算出の注目度): 11.470656135286404
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: In this study, we critically examine the foundational premise of algorithmic recourse - a process of generating counterfactual action plans (i.e., recourses) assisting individuals to reverse adverse decisions made by AI systems. The assumption underlying algorithmic recourse is that individuals accept and act on recourses that minimize the gap between their current and desired states. This assumption, however, remains empirically unverified. To address this issue, we conducted a user study with 362 participants and assessed whether minimizing the distance function, a metric of the gap between the current and desired states, indeed prompts them to accept and act upon suggested recourses. Our findings reveal a nuanced landscape: participants' acceptance of recourses did not correlate with the recourse distance. Moreover, participants' willingness to act upon recourses peaked at the minimal recourse distance but was otherwise constant. These findings cast doubt on the prevailing assumption of algorithmic recourse research and signal the need to rethink the evaluation functions to pave the way for human-centered recourse generation.
- Abstract(参考訳): 本研究では,AIシステムによる不適切な判断を個人が覆すのを支援する,対実的行動計画(recourses)の生成プロセスであるアルゴリズム・リコースの基礎的前提を批判的に検討する。
アルゴリズム的会話の根底にある前提は、個人が現在の状態と望ましい状態の間のギャップを最小限に抑えるリコースを受け入れ、行動することである。
しかし、この仮定は実証的に証明されていない。
この問題に対処するため,362人の参加者を対象にユーザスタディを実施し,現在と希望状態のギャップの指標である距離関数の最小化が,提案された言説を受理し,行動するよう促すかを検討した。
参加者のリコース受け入れは,リコース距離と相関しなかった。
さらに、参加者の言論行動への意欲は、最小の言論距離でピークに達したが、それ以外は一定であった。
これらの結果から,アルゴリズム・リコース研究の仮定に疑問を呈し,人間中心のリコース生成の道を開くための評価関数の再考の必要性が示唆された。
関連論文リスト
- MEReQ: Max-Ent Residual-Q Inverse RL for Sample-Efficient Alignment from Intervention [81.56607128684723]
本稿では,人間の介入によるサンプル効率向上を目的としたMEReQ(Maximum-Entropy Residual-Q Inverse Reinforcement Learning)を紹介する。
MereQは、人間の専門家と以前の政策の根底にある報酬関数との相違を捉える残差報酬関数を推論する。
その後、Residual Q-Learning(RQL)を使用して、ポリシーをこの残留報酬関数を使用して人間の好みと整合させる。
論文 参考訳(メタデータ) (2024-06-24T01:51:09Z) - Fairness in Algorithmic Recourse Through the Lens of Substantive
Equality of Opportunity [15.78130132380848]
アルゴリズムによる会話は、AIシステムとのインタラクションにおいて人に対してエージェンシーを与える手段として注目を集めている。
近年の研究では、個人の初期状況の違いにより、会話自体が不公平である可能性があることが示されている。
個人が行動するのに時間がかかるほど、設定が変更される可能性があるからだ。
論文 参考訳(メタデータ) (2024-01-29T11:55:45Z) - A Survey of Temporal Credit Assignment in Deep Reinforcement Learning [47.17998784925718]
クレディ・アサインメント問題(Capital Assignment Problem, CAP)とは、強化学習(Reinforcement Learning, RL)エージェントが長期的な結果と行動を関連付けるための長年にわたる課題を指す。
我々は、最先端のアルゴリズムの公平な比較を可能にする信用の統一形式性を提案する。
我々は、遅延効果、転置、行動への影響の欠如に起因する課題について論じ、既存の手法がそれらにどう対処しようとしているのかを分析した。
論文 参考訳(メタデータ) (2023-12-02T08:49:51Z) - Online Decision Mediation [72.80902932543474]
意思決定支援アシスタントを学習し、(好奇心)専門家の行動と(不完全)人間の行動の仲介役として機能することを検討する。
臨床診断では、完全に自律的な機械行動は倫理的余裕を超えることが多い。
論文 参考訳(メタデータ) (2023-10-28T05:59:43Z) - Setting the Right Expectations: Algorithmic Recourse Over Time [16.930905275894183]
本稿では,連続的に変化する環境がアルゴリズムの会話に与える影響を研究するためのエージェント・ベース・シミュレーション・フレームワークを提案する。
この結果から,特定のパラメータ化の小さなセットだけが,時間とともにエージェントに信頼性のあるアルゴリズム的リコースをもたらすことが明らかとなった。
論文 参考訳(メタデータ) (2023-09-13T14:04:15Z) - Benchmarking Bayesian Causal Discovery Methods for Downstream Treatment
Effect Estimation [137.3520153445413]
下流推論に重点を置く因果発見手法の評価において,顕著なギャップが存在する。
我々は,GFlowNetsに基づく新たな手法を含む,確立された7つの基本因果探索手法を評価する。
研究の結果,研究対象のアルゴリズムのいくつかは,多種多様なATEモードを効果的に捉えることができることがわかった。
論文 参考訳(メタデータ) (2023-07-11T02:58:10Z) - Improved Policy Evaluation for Randomized Trials of Algorithmic Resource
Allocation [54.72195809248172]
提案する新しい概念を応用した新しい推定器を提案する。
我々は,このような推定器が,サンプル手段に基づく一般的な推定器よりも精度が高いことを理論的に証明した。
論文 参考訳(メタデータ) (2023-02-06T05:17:22Z) - Generalization Bounds and Representation Learning for Estimation of
Potential Outcomes and Causal Effects [61.03579766573421]
代替薬に対する患者一人の反応など,個人レベルの因果効果の推定について検討した。
我々は,表現の誘導的処理群距離を正規化することにより,境界を最小化する表現学習アルゴリズムを考案した。
これらのアルゴリズムを拡張して、重み付き表現を同時に学習し、治療群距離をさらに削減する。
論文 参考訳(メタデータ) (2020-01-21T10:16:33Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。