論文の概要: Sparse $L^1$-Autoencoders for Scientific Data Compression
- arxiv url: http://arxiv.org/abs/2405.14270v1
- Date: Thu, 23 May 2024 07:48:00 GMT
- ステータス: 処理完了
- システム内更新日: 2024-05-24 18:24:17.559675
- Title: Sparse $L^1$-Autoencoders for Scientific Data Compression
- Title(参考訳): 科学データ圧縮のためのスパース$L^1$-Autoencoders
- Authors: Matthias Chung, Rick Archibald, Paul Atzberger, Jack Michael Solomon,
- Abstract要約: L1$-regularizedの高次元ラテント空間を用いたオートエンコーダの開発により,効率的なデータ圧縮手法を提案する。
本稿では,これらの情報に富む潜伏空間を用いて,ぼやけなどのアーティファクトを緩和し,科学的データに対する高効率なデータ圧縮手法を実現する方法について述べる。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: Scientific datasets present unique challenges for machine learning-driven compression methods, including more stringent requirements on accuracy and mitigation of potential invalidating artifacts. Drawing on results from compressed sensing and rate-distortion theory, we introduce effective data compression methods by developing autoencoders using high dimensional latent spaces that are $L^1$-regularized to obtain sparse low dimensional representations. We show how these information-rich latent spaces can be used to mitigate blurring and other artifacts to obtain highly effective data compression methods for scientific data. We demonstrate our methods for short angle scattering (SAS) datasets showing they can achieve compression ratios around two orders of magnitude and in some cases better. Our compression methods show promise for use in addressing current bottlenecks in transmission, storage, and analysis in high-performance distributed computing environments. This is central to processing the large volume of SAS data being generated at shared experimental facilities around the world to support scientific investigations. Our approaches provide general ways for obtaining specialized compression methods for targeted scientific datasets.
- Abstract(参考訳): 科学データセットは、機械学習駆動圧縮手法に固有の課題を示しており、精度の厳密な要件と潜在的な無効化アーティファクトの緩和を含んでいる。
圧縮センシングと速度歪み理論から得られた結果に基づいて, 疎低次元表現を得るために, L^1$-regularizedの高次元ラテント空間を用いた自己エンコーダを開発することにより, 効率的なデータ圧縮手法を提案する。
本稿では,これらの情報に富む潜伏空間を用いて,ぼやけなどのアーティファクトを緩和し,科学的データに対する高効率なデータ圧縮手法を実現する方法について述べる。
短角散乱(SAS)データセットを用いて,2桁前後の圧縮比を最大化できることを示す。
提案手法は, 高性能分散コンピューティング環境における送信, ストレージ, 解析における現在のボトルネックに対処する上での有効性を示す。
これは、科学調査を支援するために世界中の共有実験施設で生成される大量のSASデータを処理する中心である。
本手法は, 対象とする科学データセットに対して, 特殊な圧縮手法を得るための一般的な方法を提供する。
関連論文リスト
- ODDN: Addressing Unpaired Data Challenges in Open-World Deepfake Detection on Online Social Networks [51.03118447290247]
オープンワールドデータアグリゲーション(ODA)と圧縮・ディスカード勾配補正(CGC)を組み合わせたオープンワールドディープフェイク検出ネットワーク(ODDN)を提案する。
細粒度分析と粗粒度分析の両方により,ODAは圧縮試料と原試料の相関関係を効果的に集約する。
CGCは、オンラインソーシャルネットワーク(OSN)における多種多様な圧縮方法のパフォーマンス向上のために、圧縮・ディスカード勾配補正を組み込んだ。
論文 参考訳(メタデータ) (2024-10-24T12:32:22Z) - Lightweight Correlation-Aware Table Compression [58.50312417249682]
$texttVirtual$は、既存のオープンフォーマットとシームレスに統合されるフレームワークである。
data-govデータセットの実験によると、$texttVirtual$はApache Parquetと比較してファイルサイズを最大40%削減する。
論文 参考訳(メタデータ) (2024-10-17T22:28:07Z) - Enhancing Lossy Compression Through Cross-Field Information for Scientific Applications [11.025583805165455]
ロスシー圧縮は、複数のデータフィールドを含む科学データのサイズを減らす最も効果的な方法の1つである。
従来のアプローチでは、ターゲットデータポイントを予測する際に、単一のターゲットフィールドからのローカル情報を使用し、より高い圧縮比を達成する可能性を制限する。
本稿では,CNNを用いた新たなハイブリッド予測モデルを提案する。
論文 参考訳(メタデータ) (2024-09-26T21:06:53Z) - Compression of Structured Data with Autoencoders: Provable Benefit of
Nonlinearities and Depth [83.15263499262824]
勾配勾配勾配は入力のスパース構造を完全に無視する解に収束することを示す。
浅層構造にデノナイジング関数を付加することにより,スパースデータの圧縮におけるガウス性能の改善方法を示す。
CIFAR-10 や MNIST などの画像データセットに対して,本研究の成果を検証した。
論文 参考訳(メタデータ) (2024-02-07T16:32:29Z) - Neural-based Compression Scheme for Solar Image Data [8.374518151411612]
我々は、NASAのデータ集約画像ミッションで使用されるニューラルネットワークに基づく損失圧縮手法を提案する。
本研究では,画像の局所構造と大域構造の両方を捉えるために,局所的および非局所的アテンションモジュールを備えた逆トレーニングニューラルネットワークを提案する。
このアルゴリズムをSDOデータ解析に使用するための概念実証として、圧縮画像を用いてコロナホール(CH)検出を行った。
論文 参考訳(メタデータ) (2023-11-06T04:13:58Z) - Scalable Hybrid Learning Techniques for Scientific Data Compression [6.803722400888276]
科学者は、抽出された興味の量(QoIs)を正確に保存する圧縮技術を必要とする
本稿では,データ圧縮のためのエンドツーエンドでスケーラブルなGPUベースのパイプラインとして実装された物理インフォームド圧縮手法を提案する。
論文 参考訳(メタデータ) (2022-12-21T03:00:18Z) - Unrolled Compressed Blind-Deconvolution [77.88847247301682]
sparse multi channel blind deconvolution (S-MBD) はレーダー/ソナー/超音波イメージングなどの多くの工学的応用で頻繁に発生する。
そこで本研究では,受信した全信号に対して,はるかに少ない測定値からブラインドリカバリを可能にする圧縮手法を提案する。
論文 参考訳(メタデータ) (2022-09-28T15:16:58Z) - COIN++: Data Agnostic Neural Compression [55.27113889737545]
COIN++は、幅広いデータモダリティをシームレスに扱うニューラルネットワーク圧縮フレームワークである。
様々なデータモダリティを圧縮することで,本手法の有効性を示す。
論文 参考訳(メタデータ) (2022-01-30T20:12:04Z) - Efficient Data Compression for 3D Sparse TPC via Bicephalous
Convolutional Autoencoder [8.759778406741276]
この研究は、textitBicephalous Convolutional AutoEncoder (BCAE)と呼ばれる、空間と回帰を同時に解決するデュアルヘッドオートエンコーダを導入している。
これはMGARD、SZ、ZFPといった従来のデータ圧縮手法と比較して圧縮忠実度と比の両方の利点を示している。
論文 参考訳(メタデータ) (2021-11-09T21:26:37Z) - Exploring Autoencoder-based Error-bounded Compression for Scientific
Data [14.724393511470225]
我々は,SZモデルの観点から,エラーバウンドオートエンコーダベースのフレームワークを開発する。
設計したAEベースエラーバウンド圧縮フレームワークの主段の圧縮品質を最適化する。
論文 参考訳(メタデータ) (2021-05-25T07:53:32Z) - Analyzing and Mitigating JPEG Compression Defects in Deep Learning [69.04777875711646]
本稿では,JPEG圧縮が共通タスクやデータセットに与える影響を統一的に検討する。
高圧縮の一般的なパフォーマンス指標には大きなペナルティがあることが示される。
論文 参考訳(メタデータ) (2020-11-17T20:32:57Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。