Focus Anywhere for Fine-grained Multi-page Document Understanding
- URL: http://arxiv.org/abs/2405.14295v1
- Date: Thu, 23 May 2024 08:15:49 GMT
- Title: Focus Anywhere for Fine-grained Multi-page Document Understanding
- Authors: Chenglong Liu, Haoran Wei, Jinyue Chen, Lingyu Kong, Zheng Ge, Zining Zhu, Liang Zhao, Jianjian Sun, Chunrui Han, Xiangyu Zhang,
- Abstract summary: This paper proposes Fox, an effective pipeline, hybrid data, and tuning strategy, that catalyzes LVLMs to focus anywhere on single/multi-page documents.
We employ multiple vision vocabularies to extract visual hybrid knowledge for interleaved document pages.
We render cross-vocabulary vision data as the foreground to achieve a full reaction of multiple visual vocabularies and in-document figure understanding.
- Score: 24.76897786595502
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Modern LVLMs still struggle to achieve fine-grained document understanding, such as OCR/translation/caption for regions of interest to the user, tasks that require the context of the entire page, or even multiple pages. Accordingly, this paper proposes Fox, an effective pipeline, hybrid data, and tuning strategy, that catalyzes LVLMs to focus anywhere on single/multi-page documents. We introduce a novel task to boost the document understanding by making LVLMs focus attention on the document-level region, such as redefining full-page OCR as foreground focus. We employ multiple vision vocabularies to extract visual hybrid knowledge for interleaved document pages (e.g., a page containing a photo). Meanwhile, we render cross-vocabulary vision data as the catalyzer to achieve a full reaction of multiple visual vocabularies and in-document figure understanding. Further, without modifying the weights of multiple vision vocabularies, the above catalyzed fine-grained understanding capabilities can be efficiently tuned to multi-page documents, enabling the model to focus anywhere in both format-free and page-free manners. Besides, we build a benchmark including 9 fine-grained sub-tasks (e.g., region-level OCR/summary, color-guided OCR) to promote document analysis in the community. The experimental results verify the superiority of our model.
Related papers
- Unified Multi-Modal Interleaved Document Representation for Information Retrieval [57.65409208879344]
We produce more comprehensive and nuanced document representations by holistically embedding documents interleaved with different modalities.
Specifically, we achieve this by leveraging the capability of recent vision-language models that enable the processing and integration of text, images, and tables into a unified format and representation.
arXiv Detail & Related papers (2024-10-03T17:49:09Z) - mPLUG-DocOwl2: High-resolution Compressing for OCR-free Multi-page Document Understanding [103.05835688963947]
We propose a High-resolution DocCompressor module to compress each high-resolution document image into 324 tokens.
DocOwl2 sets a new state-of-the-art across multi-page document understanding benchmarks and reduces first token latency by more than 50%.
Compared to single-image MLLMs trained on similar data, our DocOwl2 achieves comparable single-page understanding performance with less than 20% of the visual tokens.
arXiv Detail & Related papers (2024-09-05T11:09:00Z) - VisFocus: Prompt-Guided Vision Encoders for OCR-Free Dense Document Understanding [18.609441902943445]
VisFocus is an OCR-free method designed to better exploit the vision encoder's capacity by coupling it directly with the language prompt.
We pair the architecture enhancements with a novel pre-training task, using language masking on a snippet of the document text fed to the visual encoder.
Our experiments demonstrate that this prompt-guided visual encoding approach significantly improves performance.
arXiv Detail & Related papers (2024-07-17T14:16:46Z) - Multi-Page Document Visual Question Answering using Self-Attention Scoring Mechanism [12.289101189321181]
Document Visual Question Answering (Document VQA) has garnered significant interest from both the document understanding and natural language processing communities.
The state-of-the-art single-page Document VQA methods show impressive performance, yet in multi-page scenarios, these methods struggle.
We propose a novel method and efficient training strategy for multi-page Document VQA tasks.
arXiv Detail & Related papers (2024-04-29T18:07:47Z) - PDF-MVQA: A Dataset for Multimodal Information Retrieval in PDF-based Visual Question Answering [13.625303311724757]
Document Question Answering (QA) presents a challenge in understanding visually-rich documents (VRD)
We propose PDF-MVQA, which is tailored for research journal articles, encompassing multiple pages and multimodal information retrieval.
arXiv Detail & Related papers (2024-04-19T09:00:05Z) - TextHawk: Exploring Efficient Fine-Grained Perception of Multimodal Large Language Models [9.232693392690702]
TextHawk is a document-oriented Multimodal Large Language Model (MLLM)
It is designed to explore efficient fine-grained perception by designing four dedicated components.
We conduct extensive experiments on both general and document-oriented MLLM benchmarks, and show that TextHawk outperforms the state-of-the-art methods.
arXiv Detail & Related papers (2024-04-14T09:48:37Z) - Visually Guided Generative Text-Layout Pre-training for Document Intelligence [51.09853181377696]
We propose visually guided generative text-pre-training, named ViTLP.
Given a document image, the model optimize hierarchical language and layout modeling objectives to generate the interleaved text and layout sequence.
ViTLP can function as a native OCR model to localize and recognize texts of document images.
arXiv Detail & Related papers (2024-03-25T08:00:43Z) - Enhancing Visual Document Understanding with Contrastive Learning in
Large Visual-Language Models [56.76307866160105]
We propose a contrastive learning framework, termed Document Object COntrastive learning (DoCo)
DoCo leverages an auxiliary multimodal encoder to obtain the features of document objects and align them to the visual features generated by the vision encoder of Large Visual-Language Models (LVLMs)
We demonstrate that the proposed DoCo serves as a plug-and-play pre-training method, which can be employed in the pre-training of various LVLMs without inducing any increase in computational complexity during the inference process.
arXiv Detail & Related papers (2024-02-29T10:17:27Z) - UReader: Universal OCR-free Visually-situated Language Understanding
with Multimodal Large Language Model [108.85584502396182]
We propose UReader, a first exploration of universal OCR-free visually-situated language understanding based on the Multimodal Large Language Model (MLLM)
By leveraging the shallow text recognition ability of the MLLM, we only finetuned 1.2% parameters.
Our single model achieves state-of-the-art ocr-free performance in 8 out of 10 visually-situated language understanding tasks.
arXiv Detail & Related papers (2023-10-08T11:33:09Z) - mPLUG-DocOwl: Modularized Multimodal Large Language Model for Document
Understanding [55.4806974284156]
Document understanding refers to automatically extract, analyze and comprehend information from digital documents, such as a web page.
Existing Multi-model Large Language Models (MLLMs) have demonstrated promising zero-shot capabilities in shallow OCR-free text recognition.
arXiv Detail & Related papers (2023-07-04T11:28:07Z) - SelfDoc: Self-Supervised Document Representation Learning [46.22910270334824]
SelfDoc is a task-agnostic pre-training framework for document image understanding.
Our framework exploits the positional, textual, and visual information of every semantically meaningful component in a document.
It achieves superior performance on multiple downstream tasks with significantly fewer document images used in the pre-training stage compared to previous works.
arXiv Detail & Related papers (2021-06-07T04:19:49Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.