論文の概要: Dynamic Mixture of Experts: An Auto-Tuning Approach for Efficient Transformer Models
- arxiv url: http://arxiv.org/abs/2405.14297v2
- Date: Tue, 08 Oct 2024 10:53:41 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-10-10 14:29:21.725085
- Title: Dynamic Mixture of Experts: An Auto-Tuning Approach for Efficient Transformer Models
- Title(参考訳): エキスパートの動的混合:効率的な変圧器モデルのためのオートチューニングアプローチ
- Authors: Yongxin Guo, Zhenglin Cheng, Xiaoying Tang, Tao Lin,
- Abstract要約: 本稿では,トランスフォーマーに基づく基礎モデルのトレーニングと推論の効率を高めるために,DynMoE(Dynamic Mixture of Experts)技術を導入する。
DynMoEには、各トークンがアクティベートする専門家の数を自動的に決定できる新しいゲーティングメソッドが組み込まれている。
本研究は,視覚・言語タスクにおけるGMoEと視覚言語タスクにおけるMoE-LLaVAとの競合性能を比較検討した。
- 参考スコア(独自算出の注目度): 4.109351791494196
- License:
- Abstract: The Sparse Mixture of Experts (SMoE) has been widely employed to enhance the efficiency of training and inference for Transformer-based foundational models, yielding promising results. However, the performance of SMoE heavily depends on the choice of hyper-parameters, such as the number of experts and the number of experts to be activated (referred to as top-k), resulting in significant computational overhead due to the extensive model training by searching over various hyper-parameter configurations. As a remedy, we introduce the Dynamic Mixture of Experts (DynMoE) technique. DynMoE incorporates (1) a novel gating method that enables each token to automatically determine the number of experts to activate. (2) An adaptive process automatically adjusts the number of experts during training. Extensive numerical results across Vision, Language, and Vision-Language tasks demonstrate the effectiveness of our approach to achieve competitive performance compared to GMoE for vision and language tasks, and MoE-LLaVA for vision-language tasks, while maintaining efficiency by activating fewer parameters. Our code is available at https://github.com/LINs-lab/DynMoE.
- Abstract(参考訳): SMOE(Sparse Mixture of Experts)は、トランスフォーマーに基づく基礎モデルのトレーニングと推論の効率を高めるために広く用いられている。
しかし、SMoEの性能は、専門家の数やアクティベートする専門家の数(トップkと呼ばれる)など、ハイパーパラメータの選択に大きく依存しているため、様々なハイパーパラメータ構成を探索することで、広範囲なモデルトレーニングによる計算オーバーヘッドが大きくなった。
本稿では,DynMoE(Dynamic Mixture of Experts)技術を紹介する。
DynMoEは(1)各トークンがアクティベートする専門家の数を自動的に決定できる新しいゲーティング手法を取り入れている。
2)適応的なプロセスは,訓練中に専門家の数を自動調整する。
視覚・言語・言語タスクにおけるGMoEと視覚言語タスクにおけるMoE-LLaVAとの競合性能を両立させる手法の有効性を示すとともに,より少ないパラメータの活性化による効率の維持を図っている。
私たちのコードはhttps://github.com/LINs-lab/DynMoE.comで利用可能です。
関連論文リスト
- Unlearning as multi-task optimization: A normalized gradient difference approach with an adaptive learning rate [105.86576388991713]
正規化勾配差(NGDiff)アルゴリズムを導入し、目的間のトレードオフをよりよく制御できるようにする。
本研究では,TOFUおよびMUSEデータセットにおける最先端の未学習手法において,NGDiffの優れた性能を実証的に実証し,理論的解析を行った。
論文 参考訳(メタデータ) (2024-10-29T14:41:44Z) - HMoE: Heterogeneous Mixture of Experts for Language Modeling [45.65121689677227]
伝統的に、Mixture of Experts (MoE)モデルは同一容量の均一なエキスパートを使用する。
本稿では,HMOE(Heterogeneous Mixture of Experts)を提案する。
HMoEは、活性化パラメータを少なくして低い損失を達成し、様々な事前学習評価ベンチマークにおいて、従来の均質なMoEモデルより優れる。
論文 参考訳(メタデータ) (2024-08-20T09:35:24Z) - Diversifying the Expert Knowledge for Task-Agnostic Pruning in Sparse Mixture-of-Experts [75.85448576746373]
本稿では,モデルのパラメータ効率を向上させるために,類似の専門家をグループ化し,グループ化する方法を提案する。
提案手法の有効性を3つの最先端MoEアーキテクチャを用いて検証する。
評価の結果,本手法は自然言語タスクにおいて,他のモデルプルーニング手法よりも優れていることがわかった。
論文 参考訳(メタデータ) (2024-07-12T17:25:02Z) - Multi-Head Mixture-of-Experts [100.60556163597946]
MH-MoE(Multi-Head Mixture-of-Experts)を提案する。
MH-MoEは、他のSMoE最適化手法の実装と分離が容易であり、性能向上のために他のSMoEモデルとの統合が容易である。
論文 参考訳(メタデータ) (2024-04-23T13:47:09Z) - Intuition-aware Mixture-of-Rank-1-Experts for Parameter Efficient Finetuning [50.73666458313015]
大規模言語モデル(LLM)はマルチメディアアプリケーションで複数のタスクを実行する上で大きな可能性を証明している。
MoEは、効率的なタスクデカップリングのためのスパースアーキテクチャによる有望なソリューションとして登場した。
Intuition-MoR1Eは14のパブリックデータセットで優れた効率と2.15%の全体的な精度向上を実現している。
論文 参考訳(メタデータ) (2024-04-13T12:14:58Z) - Harder Tasks Need More Experts: Dynamic Routing in MoE Models [58.18526590138739]
本稿では,Mixture of Experts(MoE)モデルのための新しい動的専門家選択フレームワークを提案する。
提案手法は,各入力に対する専門家選択の信頼性レベルに基づいて,専門家を動的に選択する。
論文 参考訳(メタデータ) (2024-03-12T13:41:15Z) - Large Language Model Agent for Hyper-Parameter Optimization [30.560250427498243]
多様な機械学習タスクにまたがるハイパーパラメータ最適化を自動化するために,LLM(Large Language Models)を活用した新しいパラダイムを導入する。
AgentHPOはタスク情報を自律的に処理し、特定のハイパーパラメータで実験を行い、反復的にそれらを最適化する。
このヒューマンライクな最適化プロセスは、必要な試行回数を大幅に削減し、セットアッププロセスを単純化し、解釈可能性とユーザ信頼を高める。
論文 参考訳(メタデータ) (2024-02-02T20:12:05Z) - When Parameter-efficient Tuning Meets General-purpose Vision-language
Models [65.19127815275307]
PETALは、一意のモード近似技術によって達成される全パラメータの0.5%しか必要とせず、トレーニングプロセスに革命をもたらす。
実験の結果,PETALは現状の手法をほとんどのシナリオで上回るだけでなく,完全な微調整モデルよりも優れていることがわかった。
論文 参考訳(メタデータ) (2023-12-16T17:13:08Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。