Dynamic Mixture of Experts: An Auto-Tuning Approach for Efficient Transformer Models
- URL: http://arxiv.org/abs/2405.14297v3
- Date: Thu, 10 Oct 2024 03:47:04 GMT
- Title: Dynamic Mixture of Experts: An Auto-Tuning Approach for Efficient Transformer Models
- Authors: Yongxin Guo, Zhenglin Cheng, Xiaoying Tang, Zhaopeng Tu, Tao Lin,
- Abstract summary: We introduce the Dynamic Mixture of Experts (DynMoE) technique to enhance the efficiency of training and inference for Transformer-based foundational models.
DynMoE incorporates a novel gating method that enables each token to automatically determine the number of experts to activate.
Our results demonstrate the effectiveness of our approach to achieve competitive performance compared to GMoE for vision and language tasks, and MoE-LLaVA for vision-language tasks.
- Score: 33.834215393960605
- License:
- Abstract: The Sparse Mixture of Experts (SMoE) has been widely employed to enhance the efficiency of training and inference for Transformer-based foundational models, yielding promising results. However, the performance of SMoE heavily depends on the choice of hyper-parameters, such as the number of experts and the number of experts to be activated (referred to as top-k), resulting in significant computational overhead due to the extensive model training by searching over various hyper-parameter configurations. As a remedy, we introduce the Dynamic Mixture of Experts (DynMoE) technique. DynMoE incorporates (1) a novel gating method that enables each token to automatically determine the number of experts to activate. (2) An adaptive process automatically adjusts the number of experts during training. Extensive numerical results across Vision, Language, and Vision-Language tasks demonstrate the effectiveness of our approach to achieve competitive performance compared to GMoE for vision and language tasks, and MoE-LLaVA for vision-language tasks, while maintaining efficiency by activating fewer parameters. Our code is available at https://github.com/LINs-lab/DynMoE.
Related papers
- Unlearning as multi-task optimization: A normalized gradient difference approach with an adaptive learning rate [105.86576388991713]
We introduce a normalized gradient difference (NGDiff) algorithm, enabling us to have better control over the trade-off between the objectives.
We provide a theoretical analysis and empirically demonstrate the superior performance of NGDiff among state-of-the-art unlearning methods on the TOFU and MUSE datasets.
arXiv Detail & Related papers (2024-10-29T14:41:44Z) - HMoE: Heterogeneous Mixture of Experts for Language Modeling [45.65121689677227]
Traditionally, Mixture of Experts (MoE) models use homogeneous experts, each with identical capacity.
We propose a novel Heterogeneous Mixture of Experts (HMoE) where experts differ in size and thus possess diverse capacities.
HMoE achieves lower loss with fewer activated parameters and outperforms conventional homogeneous MoE models on various pre-training evaluation benchmarks.
arXiv Detail & Related papers (2024-08-20T09:35:24Z) - Diversifying the Expert Knowledge for Task-Agnostic Pruning in Sparse Mixture-of-Experts [75.85448576746373]
We propose a method of grouping and pruning similar experts to improve the model's parameter efficiency.
We validate the effectiveness of our method by pruning three state-of-the-art MoE architectures.
The evaluation shows that our method outperforms other model pruning methods on a range of natural language tasks.
arXiv Detail & Related papers (2024-07-12T17:25:02Z) - Multi-Head Mixture-of-Experts [100.60556163597946]
We propose Multi-Head Mixture-of-Experts (MH-MoE), which employs a multi-head mechanism to split each token into multiple sub-tokens.
MH-MoE is straightforward to implement and decouples from other SMoE optimization methods, making it easy to integrate with other SMoE models for enhanced performance.
arXiv Detail & Related papers (2024-04-23T13:47:09Z) - Intuition-aware Mixture-of-Rank-1-Experts for Parameter Efficient Finetuning [50.73666458313015]
Large Language Models (LLMs) have demonstrated significant potential in performing multiple tasks in multimedia applications.
MoE has been emerged as a promising solution with its sparse architecture for effective task decoupling.
Intuition-MoR1E achieves superior efficiency and 2.15% overall accuracy improvement across 14 public datasets.
arXiv Detail & Related papers (2024-04-13T12:14:58Z) - Harder Tasks Need More Experts: Dynamic Routing in MoE Models [58.18526590138739]
We introduce a novel dynamic expert selection framework for Mixture of Experts (MoE) models.
Our method dynamically selects experts based on the confidence level in expert selection for each input.
arXiv Detail & Related papers (2024-03-12T13:41:15Z) - Large Language Model Agent for Hyper-Parameter Optimization [30.560250427498243]
We introduce a novel paradigm leveraging Large Language Models (LLMs) to automate hyperparameter optimization across diverse machine learning tasks.
AgentHPO processes the task information autonomously, conducts experiments with specific hyper parameters, and iteratively optimize them.
This human-like optimization process largely reduces the number of required trials, simplifies the setup process, and enhances interpretability and user trust.
arXiv Detail & Related papers (2024-02-02T20:12:05Z) - When Parameter-efficient Tuning Meets General-purpose Vision-language
Models [65.19127815275307]
PETAL revolutionizes the training process by requiring only 0.5% of the total parameters, achieved through a unique mode approximation technique.
Our experiments reveal that PETAL not only outperforms current state-of-the-art methods in most scenarios but also surpasses full fine-tuning models in effectiveness.
arXiv Detail & Related papers (2023-12-16T17:13:08Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.