Intuition-aware Mixture-of-Rank-1-Experts for Parameter Efficient Finetuning
- URL: http://arxiv.org/abs/2404.08985v1
- Date: Sat, 13 Apr 2024 12:14:58 GMT
- Title: Intuition-aware Mixture-of-Rank-1-Experts for Parameter Efficient Finetuning
- Authors: Yijiang Liu, Rongyu Zhang, Huanrui Yang, Kurt Keutzer, Yuan Du, Li Du, Shanghang Zhang,
- Abstract summary: Large Language Models (LLMs) have demonstrated significant potential in performing multiple tasks in multimedia applications.
MoE has been emerged as a promising solution with its sparse architecture for effective task decoupling.
Intuition-MoR1E achieves superior efficiency and 2.15% overall accuracy improvement across 14 public datasets.
- Score: 50.73666458313015
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Large Language Models (LLMs) have demonstrated significant potential in performing multiple tasks in multimedia applications, ranging from content generation to interactive entertainment, and artistic creation. However, the diversity of downstream tasks in multitask scenarios presents substantial adaptation challenges for LLMs. While traditional methods often succumb to knowledge confusion on their monolithic dense models, Mixture-of-Experts (MoE) has been emerged as a promising solution with its sparse architecture for effective task decoupling. Inspired by the principles of human cognitive neuroscience, we design a novel framework \texttt{Intuition-MoR1E} that leverages the inherent semantic clustering of instances to mimic the human brain to deal with multitask, offering implicit guidance to router for optimized feature allocation. Moreover, we introduce cutting-edge Rank-1 Experts formulation designed to manage a spectrum of intuitions, demonstrating enhanced parameter efficiency and effectiveness in multitask LLM finetuning. Extensive experiments demonstrate that Intuition-MoR1E achieves superior efficiency and 2.15\% overall accuracy improvement across 14 public datasets against other state-of-the-art baselines.
Related papers
- MaZO: Masked Zeroth-Order Optimization for Multi-Task Fine-Tuning of Large Language Models [26.980104922985326]
We present MaZO, the first framework specifically designed for multi-task LLM fine-tuning under ZO optimization.
MaZO tackles these challenges at the parameter level through two key innovations: a weight importance metric to identify critical parameters and a multi-task weight update mask to selectively update these parameters.
Experiments demonstrate that MaZO achieves state-of-the-art performance, surpassing even multi-task learning methods designed for first-order optimization.
arXiv Detail & Related papers (2025-02-17T07:28:52Z) - Meta-Sparsity: Learning Optimal Sparse Structures in Multi-task Networks through Meta-learning [4.462334751640166]
meta-sparsity is a framework for learning model sparsity that allows deep neural networks (DNNs) to generate optimal sparse shared structures in multi-task learning setting.
Inspired by Model Agnostic Meta-Learning (MAML), the emphasis is on learning shared and optimally sparse parameters in multi-task scenarios.
The effectiveness of meta-sparsity is rigorously evaluated by extensive experiments on two datasets.
arXiv Detail & Related papers (2025-01-21T13:25:32Z) - Transforming Vision Transformer: Towards Efficient Multi-Task Asynchronous Learning [59.001091197106085]
Multi-Task Learning (MTL) for Vision Transformer aims at enhancing the model capability by tackling multiple tasks simultaneously.
Most recent works have predominantly focused on designing Mixture-of-Experts (MoE) structures and in tegrating Low-Rank Adaptation (LoRA) to efficiently perform multi-task learning.
We propose a novel approach dubbed Efficient Multi-Task Learning (EMTAL) by transforming a pre-trained Vision Transformer into an efficient multi-task learner.
arXiv Detail & Related papers (2025-01-12T17:41:23Z) - M$^2$PT: Multimodal Prompt Tuning for Zero-shot Instruction Learning [90.75075886543404]
Multimodal Large Language Models (MLLMs) demonstrate remarkable performance across a wide range of domains.
In this work, we introduce a novel Multimodal Prompt Tuning (M$2$PT) approach for efficient instruction tuning of MLLMs.
arXiv Detail & Related papers (2024-09-24T01:40:24Z) - FactorLLM: Factorizing Knowledge via Mixture of Experts for Large Language Models [50.331708897857574]
We introduce FactorLLM, a novel approach that decomposes well-trained dense FFNs into sparse sub-networks without requiring any further modifications.
FactorLLM achieves comparable performance to the source model securing up to 85% model performance while obtaining over a 30% increase in inference speed.
arXiv Detail & Related papers (2024-08-15T16:45:16Z) - MoDE: Effective Multi-task Parameter Efficient Fine-Tuning with a Mixture of Dyadic Experts [6.245113492272563]
Mixture of Dyadic Experts (MoDE) is a novel design for efficient multi-task adaptation.
Our design allows for more fine-grained mixing, thereby increasing the model's ability to jointly handle multiple tasks.
arXiv Detail & Related papers (2024-08-02T18:05:10Z) - When Parameter-efficient Tuning Meets General-purpose Vision-language
Models [65.19127815275307]
PETAL revolutionizes the training process by requiring only 0.5% of the total parameters, achieved through a unique mode approximation technique.
Our experiments reveal that PETAL not only outperforms current state-of-the-art methods in most scenarios but also surpasses full fine-tuning models in effectiveness.
arXiv Detail & Related papers (2023-12-16T17:13:08Z) - Exploiting Modality-Specific Features For Multi-Modal Manipulation
Detection And Grounding [54.49214267905562]
We construct a transformer-based framework for multi-modal manipulation detection and grounding tasks.
Our framework simultaneously explores modality-specific features while preserving the capability for multi-modal alignment.
We propose an implicit manipulation query (IMQ) that adaptively aggregates global contextual cues within each modality.
arXiv Detail & Related papers (2023-09-22T06:55:41Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.