論文の概要: Automatic diagnosis of cardiac magnetic resonance images based on semi-supervised learning
- arxiv url: http://arxiv.org/abs/2405.14300v1
- Date: Thu, 23 May 2024 08:21:03 GMT
- ステータス: 処理完了
- システム内更新日: 2024-05-24 18:14:32.474899
- Title: Automatic diagnosis of cardiac magnetic resonance images based on semi-supervised learning
- Title(参考訳): 半教師あり学習に基づく心臓磁気共鳴画像の自動診断
- Authors: Hejun Huang, Zuguo Chen, Yi Huang, Guangqiang Luo, Chaoyang Chen, Youzhi Song,
- Abstract要約: 本稿では,心臓画像の自動分割と補助診断のための半教師付きモデルを提案する。
このモデルは、心臓画像の完全自動化された高精度セグメンテーション、特徴抽出、臨床指標の計算、疾患の予測を実現する。
- 参考スコア(独自算出の注目度): 4.568207745795955
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Cardiac magnetic resonance imaging (MRI) is a pivotal tool for assessing cardiac function. Precise segmentation of cardiac structures is imperative for accurate cardiac functional evaluation. This paper introduces a semi-supervised model for automatic segmentation of cardiac images and auxiliary diagnosis. By harnessing cardiac MRI images and necessitating only a small portion of annotated image data, the model achieves fully automated, high-precision segmentation of cardiac images, extraction of features, calculation of clinical indices, and prediction of diseases. The provided segmentation results, clinical indices, and prediction outcomes can aid physicians in diagnosis, thereby serving as auxiliary diagnostic tools. Experimental results showcase that this semi-supervised model for automatic segmentation of cardiac images and auxiliary diagnosis attains high accuracy in segmentation and correctness in prediction, demonstrating substantial practical guidance and application value.
- Abstract(参考訳): 心臓MRI(Heartiac magnetic resonance imaging)は、心臓機能を評価するための重要なツールである。
心機能の正確な評価には, 心臓構造の精密セグメンテーションが不可欠である。
本稿では,心臓画像の自動分割と補助診断のための半教師付きモデルを提案する。
心臓MRI画像を利用して、注釈付き画像データのごく一部しか必要とせず、心臓画像の完全自動化された高精度セグメンテーション、特徴の抽出、臨床指標の算出、疾患の予測を行う。
提供されたセグメンテーション結果、臨床指標および予測結果は、診断における医師の助けとなり、補助診断ツールとして機能する。
実験結果から,この半教師付き心臓画像の自動分割法と補助診断法により,精度の高いセグメンテーションと予測精度が得られ,実用的なガイダンスと応用価値が得られた。
関連論文リスト
- Classification, Regression and Segmentation directly from k-Space in Cardiac MRI [11.690226907936903]
我々は,k空間データを直接処理するためのトランスフォーマーモデルであるKMAEを提案する。
KMAEは、重要な心臓疾患の分類、関連する表現型回帰、および心臓セグメンテーションタスクを扱うことができる。
心臓MRIにおけるk-space-based diagnosisの可能性について検討した。
論文 参考訳(メタデータ) (2024-07-29T15:35:35Z) - How good nnU-Net for Segmenting Cardiac MRI: A Comprehensive Evaluation [2.5725730509014353]
本研究では, 心臓磁気共鳴画像(MRI)における nnU-Net の性能評価を行った。
2D、3Dフル解像度、3Dロー解像度、3Dカスケード、3Dアンサンブルモデルなど、さまざまなnnU-Net構成を採用しています。
論文 参考訳(メタデータ) (2024-07-26T01:47:20Z) - CMRxRecon2024: A Multi-Modality, Multi-View K-Space Dataset Boosting Universal Machine Learning for Accelerated Cardiac MRI [39.0162369912624]
CMRxRecon2024データセットは、最も大きく、最も多種多様な公開されたk空間データセットである。
健常者330名から取得され、一般的に使用されるモダリティ、解剖学的視点、臨床心臓MRIにおける獲得軌跡をカバーしている。
論文 参考訳(メタデータ) (2024-06-27T09:50:20Z) - A Comparative Analysis of U-Net-based models for Segmentation of Cardiac MRI [0.0]
本稿では,心臓短軸MRI(Magnetic Resonance Imaging)画像のセマンティックセグメンテーションにおけるディープラーニング手法の適用について検討する。
焦点は、U-Netの派生品である様々なアーキテクチャの実装に焦点を当て、包括的な解剖学的および機能解析のために心臓の特定の部分を効果的に分離することである。
論文 参考訳(メタデータ) (2024-01-18T13:51:20Z) - Ensemble Learning of Myocardial Displacements for Myocardial Infarction
Detection in Echocardiography [15.153823114115307]
心筋梗塞の早期発見と局所化は、心臓損傷の重症度を低下させる可能性がある。
深層学習技術は心エコー画像におけるMI検出の可能性を示唆している。
本研究は,複数のセグメンテーションモデルの特徴を組み合わせ,MI分類性能を向上させるロバストな手法を提案する。
論文 参考訳(メタデータ) (2023-03-12T20:16:14Z) - Preservation of High Frequency Content for Deep Learning-Based Medical
Image Classification [74.84221280249876]
大量の胸部ラジオグラフィーの効率的な分析は、医師や放射線技師を助けることができる。
本稿では,視覚情報の効率的な識別と符号化のための離散ウェーブレット変換(DWT)を提案する。
論文 参考訳(メタデータ) (2022-05-08T15:29:54Z) - Improving Classification Model Performance on Chest X-Rays through Lung
Segmentation [63.45024974079371]
本稿では, セグメンテーションによる異常胸部X線(CXR)識別性能を向上させるための深層学習手法を提案する。
提案手法は,CXR画像中の肺領域を局所化するための深層ニューラルネットワーク(XLSor)と,大規模CXRデータセットで事前学習した自己教師あり運動量コントラスト(MoCo)モデルのバックボーンを用いたCXR分類モデルである。
論文 参考訳(メタデータ) (2022-02-22T15:24:06Z) - MyoPS: A Benchmark of Myocardial Pathology Segmentation Combining
Three-Sequence Cardiac Magnetic Resonance Images [84.02849948202116]
本研究は,MyoPS(MyoPS)の医療画像解析における新たな課題を定義するものである。
myoPSは、MICCAI 2020とともにMyoPSチャレンジで最初に提案された3シーケンスの心臓磁気共鳴(CMR)画像を組み合わせている。
この課題は45対のCMR画像と予め整列されたCMR画像を提供し、アルゴリズムは3つのCMRシーケンスから補完的な情報を結合して病理領域を分割することを可能にする。
論文 参考訳(メタデータ) (2022-01-10T06:37:23Z) - Machine Learning-based Efficient Ventricular Tachycardia Detection Model
of ECG Signal [0.0]
心不全の一次診断と解析において、心電図信号は重要な役割を果たす。
本稿では,ノイズフィルタを用いた心室頻拍不整脈の予測モデル,心電図の特徴セット,機械学習に基づく分類モデルを提案する。
論文 参考訳(メタデータ) (2021-12-24T05:56:09Z) - Segmentation of the Myocardium on Late-Gadolinium Enhanced MRI based on
2.5 D Residual Squeeze and Excitation Deep Learning Model [55.09533240649176]
本研究の目的は,LGE-MRIを用いた心筋境界領域の深部学習モデルに基づく正確な自動セグメンテーション法を開発することである。
合計320回の試験(平均6回の試験)と28回の試験が行われた。
ベーススライスとミドルスライスにおけるアンサンブルモデルの性能解析は, サーバ内調査と同等であり, アトピーススライスではわずかに低かった。
論文 参考訳(メタデータ) (2020-05-27T20:44:38Z) - A Global Benchmark of Algorithms for Segmenting Late Gadolinium-Enhanced
Cardiac Magnetic Resonance Imaging [90.29017019187282]
現在世界最大の心臓LGE-MRIデータセットである154個の3D LGE-MRIを用いた「2018 left Atrium Challenge」。
技術および生物学的指標を用いた提案アルゴリズムの解析を行った。
その結果, 最上部法は93.2%, 平均表面は0.7mmであった。
論文 参考訳(メタデータ) (2020-04-26T08:49:17Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。