論文の概要: Doubly-Dynamic ISAC Precoding for Vehicular Networks: A Constrained Deep Reinforcement Learning (CDRL) Approach
- arxiv url: http://arxiv.org/abs/2405.14347v2
- Date: Mon, 5 Aug 2024 14:46:36 GMT
- ステータス: 処理完了
- システム内更新日: 2024-08-06 20:48:25.338211
- Title: Doubly-Dynamic ISAC Precoding for Vehicular Networks: A Constrained Deep Reinforcement Learning (CDRL) Approach
- Title(参考訳): ベクトルネットワークのための二重動的ISACプリコーディング:制約付き深部強化学習(CDRL)アプローチ
- Authors: Zonghui Yang, Shijian Gao, Xiang Cheng,
- Abstract要約: 車両ネットワークの実現にはISAC技術が不可欠である。
本稿では,ISACプリコーダ設計の動的更新を容易にするために,制約付き深部強化学習(CDRL)を提案する。
- 参考スコア(独自算出の注目度): 11.770137653756697
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Integrated sensing and communication (ISAC) technology is essential for enabling the vehicular networks. However, the communication channel in this scenario exhibits time-varying characteristics, and the potential targets may move rapidly, creating a doubly-dynamic phenomenon. This nature poses a challenge for real-time precoder design. While optimization-based solutions are widely researched, they are complex and heavily rely on perfect prior information, which is impractical in double dynamics. To address this challenge, we propose using constrained deep reinforcement learning (CDRL) to facilitate dynamic updates to the ISAC precoder design. Additionally, the primal dual-deep deterministic policy gradient (PD-DDPG) and Wolpertinger architecture are tailored to efficiently train the algorithm under complex constraints and variable numbers of users. The proposed scheme not only adapts to the dynamics based on observations but also leverages environmental information to enhance performance and reduce complexity. Its superiority over existing candidates has been validated through experiments.
- Abstract(参考訳): 車両ネットワークの実現にはISAC技術が不可欠である。
しかし、このシナリオにおける通信チャネルは時間的特性を示し、潜在的なターゲットは急速に移動し、二重力学現象を生じさせる。
この性質は、リアルタイムプリコーダ設計に挑戦する。
最適化ベースのソリューションは広く研究されているが、それらは複雑であり、完全な事前情報に大きく依存している。
この課題に対処するため,ISACプリコーダ設計の動的更新を容易にするために制約付き強化学習(CDRL)を提案する。
さらに、プリミティブなデュアルディープ決定論的ポリシー勾配(PD-DDPG)とWolpertingerアーキテクチャは、複雑な制約とユーザの変数数の下でアルゴリズムを効率的に訓練するように調整されている。
提案手法は, 観測に基づく力学に適応するだけでなく, 環境情報を活用し, 性能の向上と複雑性の低減を図る。
既存の候補よりも優れていることが実験によって検証されている。
関連論文リスト
- Synesthesia of Machines (SoM)-Enhanced ISAC Precoding for Vehicular Networks with Double Dynamics [15.847713094328286]
統合センシング・通信(ISAC)技術は車載ネットワークにおいて重要な役割を担っている。
ダブルダイナミクスは、リアルタイムISACプリコーディング設計において重要な課題を示す。
本稿では,機械(SoM)に強化されたプリコーディングパラダイムの合成を提案する。
論文 参考訳(メタデータ) (2024-08-24T10:35:10Z) - Agent-driven Generative Semantic Communication with Cross-Modality and Prediction [57.335922373309074]
本稿では,強化学習に基づくエージェント駆動型ジェネリックセマンティックコミュニケーションフレームワークを提案する。
本研究では, エージェント支援型セマンティックエンコーダを開発し, 適応的セマンティック抽出とサンプリングを行う。
設計モデルの有効性をUA-DETRACデータセットを用いて検証し、全体的なA-GSCフレームワークの性能向上を実証した。
論文 参考訳(メタデータ) (2024-04-10T13:24:27Z) - RLEEGNet: Integrating Brain-Computer Interfaces with Adaptive AI for
Intuitive Responsiveness and High-Accuracy Motor Imagery Classification [0.0]
本稿では,Deep Q-Networks (DQN) を用いた強化学習を分類タスクに活用するフレームワークを提案する。
本稿では,OVR(One-Versus-The-Rest)方式で,マルチクラス運動画像(MI)分類のための前処理手法を提案する。
DQNと1D-CNN-LSTMアーキテクチャの統合は意思決定プロセスをリアルタイムで最適化する。
論文 参考訳(メタデータ) (2024-02-09T02:03:13Z) - Digital Twin-Enhanced Deep Reinforcement Learning for Resource
Management in Networks Slicing [46.65030115953947]
本稿では,デジタルツインと強化学習エージェントからなるフレームワークを提案する。
具体的には、歴史的データとニューラルネットワークを用いて、実環境の状態変動則をシミュレートするデジタルツインモデルを構築することを提案する。
また、このフレームワークをオフラインで強化学習に拡張し、歴史的データのみに基づいたインテリジェントな意思決定にソリューションを利用できるようにします。
論文 参考訳(メタデータ) (2023-11-28T15:25:14Z) - Efficient Encoder-Decoder and Dual-Path Conformer for Comprehensive
Feature Learning in Speech Enhancement [0.2538209532048866]
本稿では、時間周波数(T-F)ドメイン音声強調ネットワーク(DPCFCS-Net)を提案する。
改良された高密度接続ブロック、デュアルパスモジュール、畳み込み拡張トランス(コンフォーマー)、チャンネルアテンション、空間アテンションが組み込まれている。
従来のモデルと比較して,提案モデルはより効率的なエンコーダデコーダを備え,包括的特徴を学習することができる。
論文 参考訳(メタデータ) (2023-06-09T12:52:01Z) - Causal Semantic Communication for Digital Twins: A Generalizable
Imitation Learning Approach [74.25870052841226]
デジタルツイン(DT)は、物理世界の仮想表現と通信(例えば6G)、コンピュータ、人工知能(AI)技術を活用して、多くの接続されたインテリジェンスサービスを実現する。
無線システムは、厳密な通信制約下での情報意思決定を容易にするために意味コミュニケーション(SC)のパラダイムを利用することができる。
DTベースの無線システムでは,因果意味通信(CSC)と呼ばれる新しいフレームワークが提案されている。
論文 参考訳(メタデータ) (2023-04-25T00:15:00Z) - Adapting to Dynamic LEO-B5G Systems: Meta-Critic Learning Based
Efficient Resource Scheduling [38.733584547351796]
オーバーロードされたLEO地上システムにおける2つの実用的課題に対処する。
最初の課題は、膨大な数の接続されたユーザに対して、リソースを効率的にスケジュールする方法です。
第2の課題は、動的無線環境への適応において、アルゴリズムによるソリューションをよりレジリエントにする方法だ。
論文 参考訳(メタデータ) (2021-10-13T15:21:38Z) - Learning to Continuously Optimize Wireless Resource in a Dynamic
Environment: A Bilevel Optimization Perspective [52.497514255040514]
この研究は、データ駆動メソッドが動的環境でリソース割り当て戦略を継続的に学び、最適化することを可能にする新しいアプローチを開発しています。
学習モデルが新たなエピソードに段階的に適応できるように、連続学習の概念を無線システム設計に組み込むことを提案する。
我々の設計は、異なるデータサンプルにまたがる公平性を保証する、新しい二段階最適化定式化に基づいている。
論文 参考訳(メタデータ) (2021-05-03T07:23:39Z) - Dynamic Slimmable Network [105.74546828182834]
ダイナミックスリム化システム「ダイナミックスリム化ネットワーク(DS-Net)」を開発。
ds-netは,提案するダブルヘッド動的ゲートによる動的推論機能を備えている。
静的圧縮法と最先端の静的および動的モデル圧縮法を一貫して上回っている。
論文 参考訳(メタデータ) (2021-03-24T15:25:20Z) - Learning to Continuously Optimize Wireless Resource In Episodically
Dynamic Environment [55.91291559442884]
この研究は、データ駆動型手法が動的環境で継続的に学習し、最適化できる方法論を開発する。
本稿では,無線システム学習のモデリングプロセスに連続学習の概念を構築することを提案する。
我々の設計は、異なるデータサンプル間で「一定の公正性を保証する」新しいmin-maxの定式化に基づいている。
論文 参考訳(メタデータ) (2020-11-16T08:24:34Z) - Optimization-driven Machine Learning for Intelligent Reflecting Surfaces
Assisted Wireless Networks [82.33619654835348]
インテリジェントサーフェス(IRS)は、個々の散乱素子の位相シフトを制御して無線チャネルを再形成するために用いられる。
散乱素子の規模が大きいため、受動ビームフォーミングは一般に高い計算複雑性によって挑戦される。
本稿では、IRS支援無線ネットワークの性能向上のための機械学習(ML)アプローチに焦点を当てる。
論文 参考訳(メタデータ) (2020-08-29T08:39:43Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。