Bell Nonlocality from Wigner Negativity in Qudit Systems
- URL: http://arxiv.org/abs/2405.14367v2
- Date: Fri, 14 Jun 2024 18:28:33 GMT
- Title: Bell Nonlocality from Wigner Negativity in Qudit Systems
- Authors: Uta Isabella Meyer, Ivan Šupić, Damian Markham, Frédéric Grosshans,
- Abstract summary: We show that Wigner negativity is necessary for nonlocality in qudit systems.
We propose a family of Bell inequalities that inquire correlations related to Wigner negativity of stabilizer states.
- Score: 1.2499537119440245
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Nonlocality is an essential concept that distinguishes quantum from classical models and has been extensively studied in systems of qubits. For higher-dimensional systems, certain results for their two-level counterpart, like Bell violations with stabilizer states and Clifford operators, do not generalize. On the other hand, similar to continuous variable systems, Wigner negativity is necessary for nonlocality in qudit systems. We propose a family of Bell inequalities that inquire correlations related to the Wigner negativity of stabilizer states under the adjoint action of a generalization of the qubit $\pi/8$ gate, which, in the bipartite case, is an abstraction of the CHSH inequality. The classical bound is simple to compute, and a specified stabilizer state maximally violates the inequality among all qudit states based on the Wigner negativity and an inequality between the 1-norm and the maximum norm. The Bell operator not only serves as a measure for the singlet fraction but also quantifies the volume of Wigner negativity. Furthermore, we give deterministic Bell violations, as well as violations with a constant number of measurements, for the Bell state relying on operators innate to higher-dimensional systems than the qudit at hand.
Related papers
- Nonlocality under Jaynes-Cummings evolution: beyond pseudospin operators [44.99833362998488]
We re-visit the generation and evolution of (Bell) nonlocality in hybrid scenarios whose dynamics is determined by the Jaynes-Cummings Hamiltonian.
Recent results on the optimal Bell violation in qubit-qudit systems show that the nonlocality is much greater than previously estimated.
arXiv Detail & Related papers (2024-10-14T16:01:23Z) - SOS decomposition for general Bell inequalities in two qubits systems and its application to quantum randomness [7.873333768393128]
Bell non-locality is closely related with device independent quantum randomness.
We present a kind of sum-of-squares (SOS) decomposition for general Bell inequalities in two qubits systems.
arXiv Detail & Related papers (2024-09-13T01:43:32Z) - Optimal Bell inequalities for qubit-qudit systems [44.99833362998488]
We evaluate the maximal Bell violation for a generic qubit-qudit system, obtaining easily computable expressions in arbitrary qudit dimension.
We also give simple lower and upper bounds on that violation and study the possibility of improving the amount of Bell-violation by embedding the qudit Hilbert space in one of larger dimension.
arXiv Detail & Related papers (2024-04-02T16:40:57Z) - Some consequences of Sica's approach to Bell's inequalities [55.2480439325792]
Louis Sica derived Bell's inequalities from the hypothesis that the time series of outcomes observed in one station does not change if the setting in the other station is changed.
In this paper, Sica's approach is extended to series with non ideal efficiency and to the actual time structure of experimental data.
arXiv Detail & Related papers (2024-03-05T13:59:52Z) - Bell inequalities with overlapping measurements [52.81011822909395]
We study Bell inequalities where measurements of different parties can have overlap.
This allows to accommodate problems in quantum information.
The scenarios considered show an interesting behaviour with respect to Hilbert space dimension, overlap, and symmetry.
arXiv Detail & Related papers (2023-03-03T18:11:05Z) - Scalable Bell inequalities for graph states of arbitrary prime local
dimension and self-testing [0.0]
Bell nonlocality -- the existence of quantum correlations that cannot be explained by classical means -- is one of the most striking features of quantum mechanics.
This work provides a general construction of Bell inequalities maximally violated by graph states of any prime local dimension.
We analytically determine their maximal quantum violation, a number of high relevance for device-independent applications of Bell inequalities.
arXiv Detail & Related papers (2022-12-14T09:46:27Z) - Violation of general Bell inequalities by a pure bipartite quantum state [0.0]
We derive for a pure bipartite quantum state a new upper bound on its maximal violation of general Bell inequalities.
We show that, for each of these bipartite coherent states, the maximal violation of general Bell inequalities cannot exceed the value $3$.
arXiv Detail & Related papers (2021-10-17T16:06:33Z) - Experimental violations of Leggett-Garg's inequalities on a quantum
computer [77.34726150561087]
We experimentally observe the violations of Leggett-Garg-Bell's inequalities on single and multi-qubit systems.
Our analysis highlights the limits of nowadays quantum platforms, showing that the above-mentioned correlation functions deviate from theoretical prediction as the number of qubits and the depth of the circuit grow.
arXiv Detail & Related papers (2021-09-06T14:35:15Z) - Graph-Theoretic Framework for Self-Testing in Bell Scenarios [37.067444579637076]
Quantum self-testing is the task of certifying quantum states and measurements using the output statistics solely.
We present a new approach for quantum self-testing in Bell non-locality scenarios.
arXiv Detail & Related papers (2021-04-27T08:15:01Z) - Violation of Bell inequalities by stochastic simulations of Gaussian
States based on their positive Wigner representation [0.0]
We study the use of an everywhere positive Wigner function as a probability density to perform simulations in quantum optics.
Because of the difference between symmetrically and normally ordered operators, some trajectories in simulations can imply negative intensities, despite a positive mean.
For the case of the Clauser-Horn Bell inequality, the influence of the quantum efficiency of the detectors is studied.
arXiv Detail & Related papers (2020-06-28T08:12:27Z) - Constructing Multipartite Bell inequalities from stabilizers [21.98685929768227]
We propose a systematical framework to construct Bell inequalities from stabilizers maximally violated by general stabilizer states.
We show that the constructed Bell inequalities can self-test any stabilizer state which is essentially device-independent.
Our framework can not only inspire more fruitful multipartite Bell inequalities from conventional verification methods, but also pave the way for their practical applications.
arXiv Detail & Related papers (2020-02-05T16:07:11Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.