Learning Constrained Markov Decision Processes With Non-stationary Rewards and Constraints
- URL: http://arxiv.org/abs/2405.14372v2
- Date: Thu, 26 Sep 2024 13:23:54 GMT
- Title: Learning Constrained Markov Decision Processes With Non-stationary Rewards and Constraints
- Authors: Francesco Emanuele Stradi, Anna Lunghi, Matteo Castiglioni, Alberto Marchesi, Nicola Gatti,
- Abstract summary: In constrained Markov decision processes (CMDPs) with adversarial rewards and constraints, a well-known impossibility result prevents any algorithm from attaining sublinear regret and sublinear constraint violation.
We show that this negative result can be eased in CMDPs with non-stationary rewards and constraints, by providing algorithms whose performances smoothly degrade as non-stationarity increases.
- Score: 34.7178680288326
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: In constrained Markov decision processes (CMDPs) with adversarial rewards and constraints, a well-known impossibility result prevents any algorithm from attaining both sublinear regret and sublinear constraint violation, when competing against a best-in-hindsight policy that satisfies constraints on average. In this paper, we show that this negative result can be eased in CMDPs with non-stationary rewards and constraints, by providing algorithms whose performances smoothly degrade as non-stationarity increases. Specifically, we propose algorithms attaining $\tilde{\mathcal{O}} (\sqrt{T} + C)$ regret and positive constraint violation under bandit feedback, where $C$ is a corruption value measuring the environment non-stationarity. This can be $\Theta(T)$ in the worst case, coherently with the impossibility result for adversarial CMDPs. First, we design an algorithm with the desired guarantees when $C$ is known. Then, in the case $C$ is unknown, we show how to obtain the same results by embedding such an algorithm in a general meta-procedure. This is of independent interest, as it can be applied to any non-stationary constrained online learning setting.
Related papers
- Learning Adversarial MDPs with Stochastic Hard Constraints [37.24692425018]
We study online learning problems in constrained decision processes with adversarial losses and hard constraints.
We design an algorithm that achieves sublinear regret while ensuring that the constraints are satisfied at every episode with high probability.
arXiv Detail & Related papers (2024-03-06T12:49:08Z) - Truly No-Regret Learning in Constrained MDPs [61.78619476991494]
We propose a model-based primal-dual algorithm to learn in an unknown CMDP.
We prove that our algorithm achieves sublinear regret without error cancellations.
arXiv Detail & Related papers (2024-02-24T09:47:46Z) - Model-Free, Regret-Optimal Best Policy Identification in Online CMDPs [17.62509045102346]
This paper considers the best policy identification problem in online Constrained Markov Decision Processes (CMDPs)
We are interested in algorithms that are model-free, have low regret, and identify an approximately optimal policy with a high probability.
Existing model-free algorithms for online CMDPs with sublinear regret and constraint violation do not provide any convergence guarantee to an optimal policy.
arXiv Detail & Related papers (2023-09-27T04:33:09Z) - Cancellation-Free Regret Bounds for Lagrangian Approaches in Constrained
Markov Decision Processes [24.51454563844664]
We propose a novel model-based dual algorithm OptAug-CMDP for finite-horizon CMDPs.
Our algorithm achieves a regret without the need for the cancellation of errors.
arXiv Detail & Related papers (2023-06-12T10:10:57Z) - Variance-Dependent Regret Bounds for Linear Bandits and Reinforcement
Learning: Adaptivity and Computational Efficiency [90.40062452292091]
We present the first computationally efficient algorithm for linear bandits with heteroscedastic noise.
Our algorithm is adaptive to the unknown variance of noise and achieves an $tildeO(d sqrtsum_k = 1K sigma_k2 + d)$ regret.
We also propose a variance-adaptive algorithm for linear mixture Markov decision processes (MDPs) in reinforcement learning.
arXiv Detail & Related papers (2023-02-21T00:17:24Z) - Corruption-Robust Algorithms with Uncertainty Weighting for Nonlinear
Contextual Bandits and Markov Decision Processes [59.61248760134937]
We propose an efficient algorithm to achieve a regret of $tildeO(sqrtT+zeta)$.
The proposed algorithm relies on the recently developed uncertainty-weighted least-squares regression from linear contextual bandit.
We generalize our algorithm to the episodic MDP setting and first achieve an additive dependence on the corruption level $zeta$.
arXiv Detail & Related papers (2022-12-12T15:04:56Z) - A Robust Phased Elimination Algorithm for Corruption-Tolerant Gaussian
Process Bandits [118.22458816174144]
We propose a novel robust elimination-type algorithm that runs in epochs, combines exploration with infrequent switching to select a small subset of actions, and plays each action for multiple time instants.
Our algorithm, GP Robust Phased Elimination (RGP-PE), successfully balances robustness to corruptions with exploration and exploitation.
We perform the first empirical study of robustness in the corrupted GP bandit setting, and show that our algorithm is robust against a variety of adversarial attacks.
arXiv Detail & Related papers (2022-02-03T21:19:36Z) - Safe Online Bid Optimization with Return-On-Investment and Budget
Constraints subject to Uncertainty [87.81197574939355]
We study the nature of both the optimization and learning problems.
We provide an algorithm, namely GCB, guaranteeing sublinear regret at the cost of a potentially linear number of constraints violations.
More interestingly, we provide an algorithm, namely GCB_safe(psi,phi), guaranteeing both sublinear pseudo-regret and safety w.h.p. at the cost of accepting tolerances psi and phi.
arXiv Detail & Related papers (2022-01-18T17:24:20Z) - Achieving Zero Constraint Violation for Constrained Reinforcement
Learning via Primal-Dual Approach [37.80609997145897]
Reinforcement learning is widely used in applications where one needs to perform sequential decisions while interacting with the environment.
The problem becomes more challenging when the decision requirement includes satisfying some safety constraints.
Various algorithms are available to solve CMDP problems in a model-free manner to achieve $epsilon$-optimal cumulative reward with $epsilon$ feasible policies.
An important question here is whether we can achieve $epsilon$-optimal cumulative reward with zero constraint violations or not.
arXiv Detail & Related papers (2021-09-13T21:27:03Z) - Stochastic Linear Bandits Robust to Adversarial Attacks [117.665995707568]
We provide two variants of a Robust Phased Elimination algorithm, one that knows $C$ and one that does not.
We show that both variants attain near-optimal regret in the non-corrupted case $C = 0$, while incurring additional additive terms respectively.
In a contextual setting, we show that a simple greedy algorithm is provably robust with a near-optimal additive regret term, despite performing no explicit exploration and not knowing $C$.
arXiv Detail & Related papers (2020-07-07T09:00:57Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.