Model-Free, Regret-Optimal Best Policy Identification in Online CMDPs
- URL: http://arxiv.org/abs/2309.15395v5
- Date: Mon, 15 Apr 2024 03:20:29 GMT
- Title: Model-Free, Regret-Optimal Best Policy Identification in Online CMDPs
- Authors: Zihan Zhou, Honghao Wei, Lei Ying,
- Abstract summary: This paper considers the best policy identification problem in online Constrained Markov Decision Processes (CMDPs)
We are interested in algorithms that are model-free, have low regret, and identify an approximately optimal policy with a high probability.
Existing model-free algorithms for online CMDPs with sublinear regret and constraint violation do not provide any convergence guarantee to an optimal policy.
- Score: 17.62509045102346
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: This paper considers the best policy identification (BPI) problem in online Constrained Markov Decision Processes (CMDPs). We are interested in algorithms that are model-free, have low regret, and identify an approximately optimal policy with a high probability. Existing model-free algorithms for online CMDPs with sublinear regret and constraint violation do not provide any convergence guarantee to an optimal policy and provide only average performance guarantees when a policy is uniformly sampled at random from all previously used policies. In this paper, we develop a new algorithm, named Pruning-Refinement-Identification (PRI), based on a fundamental structural property of CMDPs proved before, which we call limited stochasticity. The property says for a CMDP with $N$ constraints, there exists an optimal policy with at most $N$ stochastic decisions. The proposed algorithm first identifies at which step and in which state a stochastic decision has to be taken and then fine-tunes the distributions of these stochastic decisions. PRI achieves trio objectives: (i) PRI is a model-free algorithm; and (ii) it outputs an approximately optimal policy with a high probability at the end of learning; and (iii) PRI guarantees $\tilde{\mathcal{O}}(H\sqrt{K})$ regret and constraint violation, which significantly improves the best existing regret bound $\tilde{\mathcal{O}}(H^4 \sqrt{SA}K^{\frac{4}{5}})$ under a model-free algorithm, where $H$ is the length of each episode, $S$ is the number of states, $A$ is the number of actions, and the total number of episodes during learning is $2K+\tilde{\cal O}(K^{0.25}).$ We further present a matching lower via an example that shows under any online learning algorithm, there exists a well-separated CMDP instance such that either the regret or violation has to be $\Omega(H\sqrt{K}),$ which matches the upper bound by a polylogarithmic factor.
Related papers
- Confident Natural Policy Gradient for Local Planning in $q_π$-realizable Constrained MDPs [44.69257217086967]
The constrained Markov decision process (CMDP) framework emerges as an important reinforcement learning approach for imposing safety or other critical objectives.
In this paper, we address the learning problem given linear function approximation with $q_pi$-realizability.
arXiv Detail & Related papers (2024-06-26T17:57:13Z) - Best Policy Identification in Linear MDPs [70.57916977441262]
We investigate the problem of best identification in discounted linear Markov+Delta Decision in the fixed confidence setting under a generative model.
The lower bound as the solution of an intricate non- optimization program can be used as the starting point to devise such algorithms.
arXiv Detail & Related papers (2022-08-11T04:12:50Z) - Efficient Policy Iteration for Robust Markov Decision Processes via
Regularization [49.05403412954533]
Robust decision processes (MDPs) provide a framework to model decision problems where the system dynamics are changing or only partially known.
Recent work established the equivalence between texttts rectangular $L_p$ robust MDPs and regularized MDPs, and derived a regularized policy iteration scheme that enjoys the same level of efficiency as standard MDPs.
In this work, we focus on the policy improvement step and derive concrete forms for the greedy policy and the optimal robust Bellman operators.
arXiv Detail & Related papers (2022-05-28T04:05:20Z) - Towards Painless Policy Optimization for Constrained MDPs [46.12526917024248]
We study policy optimization in an infinite horizon, $gamma$-discounted constrained Markov decision process (CMDP)
Our objective is to return a policy that achieves large expected reward with a small constraint violation.
We propose a generic primal-dual framework that allows us to bound the reward sub-optimality and constraint violation for arbitrary algorithms.
arXiv Detail & Related papers (2022-04-11T15:08:09Z) - Achieving Zero Constraint Violation for Constrained Reinforcement
Learning via Primal-Dual Approach [37.80609997145897]
Reinforcement learning is widely used in applications where one needs to perform sequential decisions while interacting with the environment.
The problem becomes more challenging when the decision requirement includes satisfying some safety constraints.
Various algorithms are available to solve CMDP problems in a model-free manner to achieve $epsilon$-optimal cumulative reward with $epsilon$ feasible policies.
An important question here is whether we can achieve $epsilon$-optimal cumulative reward with zero constraint violations or not.
arXiv Detail & Related papers (2021-09-13T21:27:03Z) - Softmax Policy Gradient Methods Can Take Exponential Time to Converge [60.98700344526674]
The softmax policy gradient (PG) method is arguably one of the de facto implementations of policy optimization in modern reinforcement learning.
We demonstrate that softmax PG methods can take exponential time -- in terms of $mathcalS|$ and $frac11-gamma$ -- to converge.
arXiv Detail & Related papers (2021-02-22T18:56:26Z) - Model-Free Algorithm and Regret Analysis for MDPs with Long-Term
Constraints [38.2783003051101]
This paper uses concepts from constrained optimization and Q-learning to propose an algorithm for CMDP with long-term constraints.
We note that these are the first results on regret analysis for MDP with long-term constraints, where the transition probabilities are not known apriori.
arXiv Detail & Related papers (2020-06-10T17:19:29Z) - Provably Efficient Model-Free Algorithm for MDPs with Peak Constraints [38.2783003051101]
This paper considers the peak Constrained Markov Decision Process (PCMDP), where the agent chooses the policy to maximize total reward in the finite horizon as well as satisfy constraints at each epoch with probability 1.
We propose a model-free algorithm that converts PCMDP problem to an unconstrained problem and a Q-learning based approach is applied.
arXiv Detail & Related papers (2020-03-11T23:23:29Z) - Provably Efficient Safe Exploration via Primal-Dual Policy Optimization [105.7510838453122]
We study the Safe Reinforcement Learning (SRL) problem using the Constrained Markov Decision Process (CMDP) formulation.
We present an provably efficient online policy optimization algorithm for CMDP with safe exploration in the function approximation setting.
arXiv Detail & Related papers (2020-03-01T17:47:03Z) - Provably Efficient Exploration in Policy Optimization [117.09887790160406]
This paper proposes an Optimistic variant of the Proximal Policy Optimization algorithm (OPPO)
OPPO achieves $tildeO(sqrtd2 H3 T )$ regret.
To the best of our knowledge, OPPO is the first provably efficient policy optimization algorithm that explores.
arXiv Detail & Related papers (2019-12-12T08:40:02Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.