論文の概要: Reliable Trajectory Prediction and Uncertainty Quantification with Conditioned Diffusion Models
- arxiv url: http://arxiv.org/abs/2405.14384v1
- Date: Thu, 23 May 2024 10:01:39 GMT
- ステータス: 処理完了
- システム内更新日: 2024-05-24 15:54:01.891167
- Title: Reliable Trajectory Prediction and Uncertainty Quantification with Conditioned Diffusion Models
- Title(参考訳): 条件付き拡散モデルによる信頼軌道予測と不確かさの定量化
- Authors: Marion Neumeier, Sebastian Dorn, Michael Botsch, Wolfgang Utschick,
- Abstract要約: 本研究は, 拡散モデルを用いた高速道路軌道予測のための新しいネットワークアーキテクチャである, 条件付き車両運動拡散(cVMD)モデルを紹介する。
cVMDのアーキテクチャの中心は、安全クリティカルなアプリケーションにおいて重要な機能である不確実な定量化を実行する能力である。
実験により,提案アーキテクチャは最先端モデルと比較して,競合軌道予測精度が向上することが示された。
- 参考スコア(独自算出の注目度): 11.308331231957588
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: This work introduces the conditioned Vehicle Motion Diffusion (cVMD) model, a novel network architecture for highway trajectory prediction using diffusion models. The proposed model ensures the drivability of the predicted trajectory by integrating non-holonomic motion constraints and physical constraints into the generative prediction module. Central to the architecture of cVMD is its capacity to perform uncertainty quantification, a feature that is crucial in safety-critical applications. By integrating the quantified uncertainty into the prediction process, the cVMD's trajectory prediction performance is improved considerably. The model's performance was evaluated using the publicly available highD dataset. Experiments show that the proposed architecture achieves competitive trajectory prediction accuracy compared to state-of-the-art models, while providing guaranteed drivable trajectories and uncertainty quantification.
- Abstract(参考訳): 本研究は, 拡散モデルを用いた高速道路軌道予測のための新しいネットワークアーキテクチャである, 条件付き車両運動拡散(cVMD)モデルを紹介する。
提案モデルは,非ホロノミックな運動制約と物理的制約を生成予測モジュールに統合することにより,予測軌道の乾燥性を保証する。
cVMDのアーキテクチャの中心は、安全クリティカルなアプリケーションにおいて重要な機能である不確実な定量化を実行する能力である。
定量化された不確実性を予測プロセスに統合することにより、cVMDの軌道予測性能を大幅に改善する。
モデルの性能は,公開されている高Dデータセットを用いて評価した。
実験により,提案アーキテクチャは最先端モデルと比較して,競合軌道予測精度が向上し,ドライビング可能な軌道と不確かさの定量化が保証された。
関連論文リスト
- Traj-Explainer: An Explainable and Robust Multi-modal Trajectory Prediction Approach [12.60529039445456]
複雑な交通環境のナビゲーションはインテリジェントな技術の進歩によって大幅に向上し、自動車の正確な環境認識と軌道予測を可能にした。
既存の研究は、しばしばシナリオエージェントの合同推論を無視し、軌道予測モデルにおける解釈可能性に欠ける。
本研究では, 説明可能な拡散条件に基づく多モード軌道予測トラj-Explainerという, 説明可能性指向の軌道予測モデルが設計されている。
論文 参考訳(メタデータ) (2024-10-22T08:17:33Z) - Physics-guided Active Sample Reweighting for Urban Flow Prediction [75.24539704456791]
都市フロー予測は、バス、タクシー、ライド駆動モデルといった交通サービスのスループットを見積もる、微妙な時間的モデリングである。
最近の予測解は、物理学誘導機械学習(PGML)の概念による改善をもたらす。
我々は、PN(atized Physics-guided Network)を開発し、P-GASR(Physical-guided Active Sample Reweighting)を提案する。
論文 参考訳(メタデータ) (2024-07-18T15:44:23Z) - Adaptive Uncertainty Quantification for Trajectory Prediction Under Distributional Shift [6.029850098632435]
軌道予測モデルは、有限未来の軌道とその関連する不確実性の両方をオンライン環境で推測することができる。
本研究では、予測された軌道の不確かさを定量化するために、分散シフトフレームワークCUQDSのコンフォーマル不確実性定量化を提案する。
論文 参考訳(メタデータ) (2024-06-17T21:25:36Z) - Certified Human Trajectory Prediction [66.1736456453465]
交通予知は自動運転車に不可欠な役割を担っている。
本稿では,軌道予測作業に適した認証手法を提案する。
非有界出力や変異モダリティを含む、軌道予測に関連する固有の課題に対処する。
論文 参考訳(メタデータ) (2024-03-20T17:41:35Z) - Diffusion-Based Environment-Aware Trajectory Prediction [3.1406146587437904]
自動運転車の安全かつ効率的な運転には、交通参加者の将来の軌跡を予測する能力が不可欠である。
本稿では,多エージェント軌道予測のための拡散モデルを提案する。
このモデルは、交通参加者と環境の間の複雑な相互作用を捉え、データのマルチモーダルな性質を正確に学習することができる。
論文 参考訳(メタデータ) (2024-03-18T10:35:15Z) - Towards Generalizable and Interpretable Motion Prediction: A Deep
Variational Bayes Approach [54.429396802848224]
本稿では,分布外ケースに対する頑健な一般化性を有する動き予測のための解釈可能な生成モデルを提案する。
このモデルでは, 長期目的地の空間分布を推定することにより, 目標駆動動作予測を実現する。
動き予測データセットの実験は、適合したモデルが解釈可能で一般化可能であることを検証した。
論文 参考訳(メタデータ) (2024-03-10T04:16:04Z) - Generative Modeling with Phase Stochastic Bridges [49.4474628881673]
拡散モデル(DM)は、連続入力のための最先端の生成モデルを表す。
我々はtextbfphase space dynamics に基づく新しい生成モデリングフレームワークを提案する。
我々のフレームワークは、動的伝播の初期段階において、現実的なデータポイントを生成する能力を示す。
論文 参考訳(メタデータ) (2023-10-11T18:38:28Z) - Uncertainty estimation of pedestrian future trajectory using Bayesian
approximation [137.00426219455116]
動的トラフィックシナリオでは、決定論的予測に基づく計画は信頼できない。
著者らは、決定論的アプローチが捉えられない近似を用いて予測中の不確実性を定量化する。
将来の状態の不確実性に対する降雨重量と長期予測の影響について検討した。
論文 参考訳(メタデータ) (2022-05-04T04:23:38Z) - Bootstrap Motion Forecasting With Self-Consistent Constraints [52.88100002373369]
自己整合性制約を用いた動き予測をブートストラップする新しい枠組みを提案する。
運動予測タスクは、過去の空間的・時間的情報を組み込むことで、車両の将来の軌跡を予測することを目的としている。
提案手法は,既存手法の予測性能を常に向上することを示す。
論文 参考訳(メタデータ) (2022-04-12T14:59:48Z) - Learning Prediction Intervals for Model Performance [1.433758865948252]
モデル性能の予測間隔を計算する手法を提案する。
我々は,幅広いドリフト条件におけるアプローチを評価し,競合ベースラインよりも大幅に改善することを示す。
論文 参考訳(メタデータ) (2020-12-15T21:32:03Z) - GraphTCN: Spatio-Temporal Interaction Modeling for Human Trajectory
Prediction [5.346782918364054]
我々は,より効率的かつ正確な軌道予測を支援するために,新しいCNNベースの時空間グラフフレームワークGraphCNTを提案する。
従来のモデルとは対照的に,我々のモデルにおける空間的・時間的モデリングは各局所時間ウィンドウ内で計算される。
本モデルは,様々な軌道予測ベンチマークデータセットの最先端モデルと比較して,効率と精度の両面で優れた性能を実現する。
論文 参考訳(メタデータ) (2020-03-16T12:56:12Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。