Prediction of cancer dynamics under treatment using Bayesian neural networks: A simulated study
- URL: http://arxiv.org/abs/2405.14508v1
- Date: Thu, 23 May 2024 12:47:19 GMT
- Title: Prediction of cancer dynamics under treatment using Bayesian neural networks: A simulated study
- Authors: Even Moa Myklebust, Arnoldo Frigessi, Fredrik Schjesvold, Jasmine Foo, Kevin Leder, Alvaro Köhn-Luque,
- Abstract summary: We develop a hierarchical Bayesian model of subpopulation dynamics to predict cancer dynamics under treatment.
We are inspired by cancer dynamics in multiple myeloma (MM), where serum M protein is a well-known proxy of tumor burden.
- Score: 0.0
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: Predicting cancer dynamics under treatment is challenging due to high inter-patient heterogeneity, lack of predictive biomarkers, and sparse and noisy longitudinal data. Mathematical models can summarize cancer dynamics by a few interpretable parameters per patient. Machine learning methods can then be trained to predict the model parameters from baseline covariates, but do not account for uncertainty in the parameter estimates. Instead, hierarchical Bayesian modeling can model the relationship between baseline covariates to longitudinal measurements via mechanistic parameters while accounting for uncertainty in every part of the model. The mapping from baseline covariates to model parameters can be modeled in several ways. A linear mapping simplifies inference but fails to capture nonlinear covariate effects and scale poorly for interaction modeling when the number of covariates is large. In contrast, Bayesian neural networks can potentially discover interactions between covariates automatically, but at a substantial cost in computational complexity. In this work, we develop a hierarchical Bayesian model of subpopulation dynamics that uses baseline covariate information to predict cancer dynamics under treatment, inspired by cancer dynamics in multiple myeloma (MM), where serum M protein is a well-known proxy of tumor burden. As a working example, we apply the model to a simulated dataset and compare its ability to predict M protein trajectories to a model with linear covariate effects. Our results show that the Bayesian neural network covariate effect model predicts cancer dynamics more accurately than a linear covariate effect model when covariate interactions are present. The framework can also be applied to other types of cancer or other time series prediction problems that can be described with a parametric model.
Related papers
- Modeling Long Sequences in Bladder Cancer Recurrence: A Comparative Evaluation of LSTM,Transformer,and Mamba [0.0]
This study integrates the advantages of deep learning models for handling long-sequence data with the Cox proportional hazards model.
The LSTM-Cox model is a robust and efficient method for recurrent data analysis and feature extraction,surpassing newer models like Transformer and Mamba.
arXiv Detail & Related papers (2024-05-28T18:38:15Z) - Kernel Cox partially linear regression: building predictive models for
cancer patients' survival [4.230753712933184]
We build a kernel Cox proportional hazards semi-parametric model and propose a novel regularized garrotized kernel machine (RegGKM) method to fit the model.
We use the kernel machine method to describe the complex relationship between survival and predictors, while automatically removing irrelevant parametric and non-parametric predictors.
Our results can help classify patients into groups with different death risks, facilitating treatment for better clinical outcomes.
arXiv Detail & Related papers (2023-10-11T04:27:54Z) - Capturing dynamical correlations using implicit neural representations [85.66456606776552]
We develop an artificial intelligence framework which combines a neural network trained to mimic simulated data from a model Hamiltonian with automatic differentiation to recover unknown parameters from experimental data.
In doing so, we illustrate the ability to build and train a differentiable model only once, which then can be applied in real-time to multi-dimensional scattering data.
arXiv Detail & Related papers (2023-04-08T07:55:36Z) - Neural Frailty Machine: Beyond proportional hazard assumption in neural
survival regressions [30.018173329118184]
We present neural frailty machine (NFM), a powerful and flexible neural modeling framework for survival regressions.
Two concrete models are derived under the framework that extends neural proportional hazard models and non hazard regression models.
We conduct experimental evaluations over $6$ benchmark datasets of different scales, showing that the proposed NFM models outperform state-of-the-art survival models in terms of predictive performance.
arXiv Detail & Related papers (2023-03-18T08:15:15Z) - Dynamically-Scaled Deep Canonical Correlation Analysis [77.34726150561087]
Canonical Correlation Analysis (CCA) is a method for feature extraction of two views by finding maximally correlated linear projections of them.
We introduce a novel dynamic scaling method for training an input-dependent canonical correlation model.
arXiv Detail & Related papers (2022-03-23T12:52:49Z) - Mixed Effects Neural ODE: A Variational Approximation for Analyzing the
Dynamics of Panel Data [50.23363975709122]
We propose a probabilistic model called ME-NODE to incorporate (fixed + random) mixed effects for analyzing panel data.
We show that our model can be derived using smooth approximations of SDEs provided by the Wong-Zakai theorem.
We then derive Evidence Based Lower Bounds for ME-NODE, and develop (efficient) training algorithms.
arXiv Detail & Related papers (2022-02-18T22:41:51Z) - Unifying Epidemic Models with Mixtures [28.771032745045428]
The COVID-19 pandemic has emphasized the need for a robust understanding of epidemic models.
Here, we introduce a simple mixture-based model which bridges the two approaches.
Although the model is non-mechanistic, we show that it arises as the natural outcome of a process based on a networked SIR framework.
arXiv Detail & Related papers (2022-01-07T19:42:05Z) - Multi-modality fusion using canonical correlation analysis methods:
Application in breast cancer survival prediction from histology and genomics [16.537929113715432]
We study the use of canonical correlation analysis (CCA) and penalized variants of CCA for the fusion of two modalities.
We analytically show that, with known model parameters, posterior mean estimators that jointly use both modalities outperform arbitrary linear mixing of single modality posterior estimators in latent variable prediction.
arXiv Detail & Related papers (2021-11-27T21:18:01Z) - Estimation of Bivariate Structural Causal Models by Variational Gaussian
Process Regression Under Likelihoods Parametrised by Normalising Flows [74.85071867225533]
Causal mechanisms can be described by structural causal models.
One major drawback of state-of-the-art artificial intelligence is its lack of explainability.
arXiv Detail & Related papers (2021-09-06T14:52:58Z) - A multi-stage machine learning model on diagnosis of esophageal
manometry [50.591267188664666]
The framework includes deep-learning models at the swallow-level stage and feature-based machine learning models at the study-level stage.
This is the first artificial-intelligence-style model to automatically predict CC diagnosis of HRM study from raw multi-swallow data.
arXiv Detail & Related papers (2021-06-25T20:09:23Z) - Firearm Detection via Convolutional Neural Networks: Comparing a
Semantic Segmentation Model Against End-to-End Solutions [68.8204255655161]
Threat detection of weapons and aggressive behavior from live video can be used for rapid detection and prevention of potentially deadly incidents.
One way for achieving this is through the use of artificial intelligence and, in particular, machine learning for image analysis.
We compare a traditional monolithic end-to-end deep learning model and a previously proposed model based on an ensemble of simpler neural networks detecting fire-weapons via semantic segmentation.
arXiv Detail & Related papers (2020-12-17T15:19:29Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.