論文の概要: Towards Realistic Long-tailed Semi-supervised Learning in an Open World
- arxiv url: http://arxiv.org/abs/2405.14516v1
- Date: Thu, 23 May 2024 12:53:50 GMT
- ステータス: 処理完了
- システム内更新日: 2024-05-24 15:15:02.569940
- Title: Towards Realistic Long-tailed Semi-supervised Learning in an Open World
- Title(参考訳): オープンワールドにおける現実的なロングテールセミ教師あり学習を目指して
- Authors: Yuanpeng He, Lijian Li,
- Abstract要約: 我々は、既知のカテゴリと新規カテゴリの分布関係を前提としない、よりエフェリアティックなオープンワールドLong-tailed Semi-supervised Learning(textbfROLSSL)を構築する。
提案したROOSSL設定では、二重ステージロジット調整と呼ばれる、シンプルで効果的な解を提案する。
CIFAR100やImageNet100のようなデータセットの実験では、最大50.1%のパフォーマンス改善が示されている。
- 参考スコア(独自算出の注目度): 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Open-world long-tailed semi-supervised learning (OLSSL) has increasingly attracted attention. However, existing OLSSL algorithms generally assume that the distributions between known and novel categories are nearly identical. Against this backdrop, we construct a more \emph{Realistic Open-world Long-tailed Semi-supervised Learning} (\textbf{ROLSSL}) setting where there is no premise on the distribution relationships between known and novel categories. Furthermore, even within the known categories, the number of labeled samples is significantly smaller than that of the unlabeled samples, as acquiring valid annotations is often prohibitively costly in the real world. Under the proposed ROLSSL setting, we propose a simple yet potentially effective solution called dual-stage post-hoc logit adjustments. The proposed approach revisits the logit adjustment strategy by considering the relationships among the frequency of samples, the total number of categories, and the overall size of data. Then, it estimates the distribution of unlabeled data for both known and novel categories to dynamically readjust the corresponding predictive probabilities, effectively mitigating category bias during the learning of known and novel classes with more selective utilization of imbalanced unlabeled data. Extensive experiments on datasets such as CIFAR100 and ImageNet100 have demonstrated performance improvements of up to 50.1\%, validating the superiority of our proposed method and establishing a strong baseline for this task. For further researches, the anonymous link to the experimental code is at \href{https://github.com/heyuanpengpku/ROLSSL}{\textcolor{brightpink}{https://github.com/heyuanpengpku/ROLSSL}}
- Abstract(参考訳): オープンワールドの長い尾を持つ半教師付き学習(OLSSL)が注目を集めている。
しかし、既存のOLSSLアルゴリズムは一般に、既知のカテゴリと新しいカテゴリの分布はほぼ同一であると仮定する。
このような背景から,我々は,既知のカテゴリと新規カテゴリの分布関係を前提としない,より‘emph{Realistic Open-world Long-tailed Semi-supervised Learning}’(\textbf{ROLSSL})を構築した。
さらに、既知のカテゴリにおいても、ラベル付けされたサンプルの数はラベル付けされていないサンプルのそれよりも大幅に少ない。
提案したROOSSL設定では、二重段後ロジット調整と呼ばれる、単純で効果的な解を提案する。
提案手法では,サンプルの頻度,カテゴリの総数,データ全体のサイズの関係を考慮し,ロジット調整戦略を再検討する。
そして、未知のカテゴリと新奇なカテゴリの両方のラベル付きデータの分布を推定し、対応する予測確率を動的に再調整し、不均衡なデータをより選択的に活用することで、既知のクラスと新奇クラスの学習におけるカテゴリバイアスを効果的に軽減する。
CIFAR100やImageNet100のようなデータセットに対する大規模な実験は、最大50.1\%のパフォーマンス向上を示し、提案手法の優位性を検証し、このタスクの強力なベースラインを確立する。
さらなる研究のために、実験コードへの匿名リンクは \href{https://github.com/heyuanpengpku/ROLSSL}{\textcolor{brightpink}{https://github.com/heyuanpengpku/ROLSSL}} にある。
関連論文リスト
- RankMatch: A Novel Approach to Semi-Supervised Label Distribution
Learning Leveraging Inter-label Correlations [52.549807652527306]
本稿では,SSLDL (Semi-Supervised Label Distribution Learning) の革新的なアプローチである RankMatch を紹介する。
RankMatchは、ラベルのない大量のデータとともに、少数のラベル付き例を効果的に活用する。
我々はRandMatchに縛られる理論的な一般化を確立し、広範な実験を通じて既存のSSLDL法に対する性能上の優位性を実証した。
論文 参考訳(メタデータ) (2023-12-11T12:47:29Z) - Semi-Supervised Learning in the Few-Shot Zero-Shot Scenario [14.916971861796384]
Semi-Supervised Learning (SSL)は、ラベル付きデータとラベルなしデータの両方を利用して、モデルのパフォーマンスを向上させるフレームワークである。
既存のSSLメソッドを拡張し、特定のクラスが欠落している状況に対処するための一般的なアプローチを提案する。
実験の結果,最先端のSSL,オープンセットのSSL,オープンワールドのSSLメソッドと比較して,精度が大幅に向上した。
論文 参考訳(メタデータ) (2023-08-27T14:25:07Z) - Fusion of Global and Local Knowledge for Personalized Federated Learning [75.20751492913892]
本稿では,低ランクおよびスパース分解を伴うパーソナライズされたモデルについて検討する。
我々はtextbfSparse と textbfRank を混合した2段階学習アルゴリズム textbfFederated Learning を提案する。
適切な仮定の下では、FedSLRによって訓練されたGKRが、少なくとも準線形に正規化問題の定常点に収束できることが示される。
論文 参考訳(メタデータ) (2023-02-21T23:09:45Z) - Towards Realistic Semi-Supervised Learning [73.59557447798134]
オープンワールド環境でSSLに取り組み、未知のクラスと未知のクラスを同時に分類する新しい手法を提案する。
我々のアプローチは、既存の最先端の7つのデータセットよりも大幅に優れています。
論文 参考訳(メタデータ) (2022-07-05T19:04:43Z) - OpenLDN: Learning to Discover Novel Classes for Open-World
Semi-Supervised Learning [110.40285771431687]
半教師付き学習(SSL)は、教師付き学習のアノテーションボトルネックに対処する主要なアプローチの1つである。
最近のSSLメソッドは、ラベルなしデータの大規模なリポジトリを有効活用して、ラベル付きデータの小さなセットに依存しながら、パフォーマンスを向上させることができる。
この研究は、ペアワイズ類似度損失を利用して新しいクラスを発見するOpenLDNを導入している。
論文 参考訳(メタデータ) (2022-07-05T18:51:05Z) - OpenMatch: Open-set Consistency Regularization for Semi-supervised
Learning with Outliers [71.08167292329028]
我々はOpenMatchと呼ばれる新しいオープンセットセミスーパーバイザードラーニング(OSSL)アプローチを提案する。
OpenMatchは、1-vs-all(OVA)分類器に基づいた新規検出とFixMatchを統合する。
3つのデータセットで最先端のパフォーマンスを実現し、CIFAR10の未ラベルデータで見えないアウトリーチを検出する上で、完全な教師付きモデルよりも優れています。
論文 参考訳(メタデータ) (2021-05-28T23:57:15Z) - Improving Calibration for Long-Tailed Recognition [68.32848696795519]
このようなシナリオにおけるキャリブレーションとパフォーマンスを改善する2つの方法を提案します。
異なるサンプルによるデータセットバイアスに対して,シフトバッチ正規化を提案する。
提案手法は,複数の長尾認識ベンチマークデータセットに新しいレコードをセットする。
論文 参考訳(メタデータ) (2021-04-01T13:55:21Z) - NeuCrowd: Neural Sampling Network for Representation Learning with
Crowdsourced Labels [19.345894148534335]
本稿では,クラウドソースラベルから教師付き表現学習(SRL)を実現する統一フレームワークであるemphNeuCrowdを提案する。
提案手法は1つの実世界のデータセットと3つの実世界のデータセットで評価される。
論文 参考訳(メタデータ) (2020-03-21T13:38:18Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。