論文の概要: Explaining Black-box Model Predictions via Two-level Nested Feature Attributions with Consistency Property
- arxiv url: http://arxiv.org/abs/2405.14522v1
- Date: Thu, 23 May 2024 13:03:26 GMT
- ステータス: 処理完了
- システム内更新日: 2024-05-24 15:05:17.856385
- Title: Explaining Black-box Model Predictions via Two-level Nested Feature Attributions with Consistency Property
- Title(参考訳): 一貫性特性を持つ2レベルネスト特徴属性によるブラックボックスモデル予測
- Authors: Yuya Yoshikawa, Masanari Kimura, Ryotaro Shimizu, Yuki Saito,
- Abstract要約: 本稿では,2段階の特徴属性を同時に推定するモデルに依存しない局所的説明法を提案する。
提案手法の重要な考え方は、HiFAとLoFAの間に存在するべき一貫性性を導入することである。
この一貫性により、提案手法は、ブラックボックスモデルに忠実であり、互いに一貫性のあるHiFAとLoFAを生成できる。
- 参考スコア(独自算出の注目度): 8.793424363526212
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Techniques that explain the predictions of black-box machine learning models are crucial to make the models transparent, thereby increasing trust in AI systems. The input features to the models often have a nested structure that consists of high- and low-level features, and each high-level feature is decomposed into multiple low-level features. For such inputs, both high-level feature attributions (HiFAs) and low-level feature attributions (LoFAs) are important for better understanding the model's decision. In this paper, we propose a model-agnostic local explanation method that effectively exploits the nested structure of the input to estimate the two-level feature attributions simultaneously. A key idea of the proposed method is to introduce the consistency property that should exist between the HiFAs and LoFAs, thereby bridging the separate optimization problems for estimating them. Thanks to this consistency property, the proposed method can produce HiFAs and LoFAs that are both faithful to the black-box models and consistent with each other, using a smaller number of queries to the models. In experiments on image classification in multiple instance learning and text classification using language models, we demonstrate that the HiFAs and LoFAs estimated by the proposed method are accurate, faithful to the behaviors of the black-box models, and provide consistent explanations.
- Abstract(参考訳): ブラックボックス機械学習モデルの予測を説明する技術は、モデルを透過的にすることで、AIシステムの信頼性を高めるために不可欠である。
モデルへの入力機能は、しばしば、高レベルの特徴と低レベルの特徴からなるネスト構造を持ち、それぞれの高レベルの特徴は複数の低レベルの特徴に分解される。
このような入力に対しては、ハイレベルな特徴属性(HiFA)とローレベルな特徴属性(LoFA)の両方がモデルの判断をよりよく理解するために重要である。
本論文では,入力のネスト構造を効果的に活用し,2段階の特徴属性を同時に推定するモデルに依存しない局所的説明法を提案する。
提案手法の鍵となる考え方は、HiFAとLoFAの間に存在するべき整合性を導入することである。
この整合性により、提案手法は、ブラックボックスモデルに忠実で、互いに整合性のあるHiFAとLoFAを、モデルに対するクエリの少ない方法で生成することができる。
言語モデルを用いた複数事例学習における画像分類とテキスト分類の実験において,提案手法により推定されたHiFAとLoFAは正確であり,ブラックボックスモデルの挙動に忠実であり,一貫した説明を提供する。
関連論文リスト
- High-Performance Few-Shot Segmentation with Foundation Models: An Empirical Study [64.06777376676513]
基礎モデルに基づく数ショットセグメンテーション(FSS)フレームワークを開発した。
具体的には、基礎モデルから暗黙的な知識を抽出し、粗い対応を構築するための簡単なアプローチを提案する。
2つの広く使われているデータセットの実験は、我々のアプローチの有効性を実証している。
論文 参考訳(メタデータ) (2024-09-10T08:04:11Z) - MCPNet: An Interpretable Classifier via Multi-Level Concept Prototypes [24.28807025839685]
我々は、低レベルの特徴の意思決定プロセスに関する洞察が欠如している説明は、完全に忠実でも有用でもないと論じる。
本稿では,クラス認識概念分布(CCD)の損失を通じて,分類目的のマルチレベル概念のプロトタイプ分布を学習・調整する新しいパラダイムを提案する。
論文 参考訳(メタデータ) (2024-04-13T11:13:56Z) - Faithful Explanations of Black-box NLP Models Using LLM-generated
Counterfactuals [67.64770842323966]
NLPシステムの予測に関する因果的説明は、安全性を確保し、信頼を確立するために不可欠である。
既存の手法は、しばしばモデル予測を効果的または効率的に説明できない。
本稿では, 対物近似(CF)の2つの手法を提案する。
論文 参考訳(メタデータ) (2023-10-01T07:31:04Z) - Increasing Performance And Sample Efficiency With Model-agnostic
Interactive Feature Attributions [3.0655581300025996]
我々は,2つの一般的な説明手法(Occlusion と Shapley の値)に対して,モデルに依存しない実装を提供し,その複雑なモデルにおいて,完全に異なる属性を強制する。
提案手法は,修正された説明に基づいてトレーニングデータセットを増強することで,モデルの性能を著しく向上させることができることを示す。
論文 参考訳(メタデータ) (2023-06-28T15:23:28Z) - An Additive Instance-Wise Approach to Multi-class Model Interpretation [53.87578024052922]
解釈可能な機械学習は、ブラックボックスシステムの特定の予測を駆動する要因に関する洞察を提供する。
既存の手法は主に、局所的な加法的あるいはインスタンス的なアプローチに従う説明的入力特徴の選択に重点を置いている。
本研究は,両手法の長所を生かし,複数の対象クラスに対する局所的な説明を同時に学習するためのグローバルフレームワークを提案する。
論文 参考訳(メタデータ) (2022-07-07T06:50:27Z) - A Unified Understanding of Deep NLP Models for Text Classification [88.35418976241057]
我々は、テキスト分類のためのNLPモデルの統一的な理解を可能にする視覚解析ツールDeepNLPVisを開発した。
主要なアイデアは相互情報に基づく尺度であり、モデルの各レイヤがサンプル内の入力語の情報をどのように保持するかを定量的に説明する。
コーパスレベル、サンプルレベル、単語レベルビジュアライゼーションで構成されるマルチレベルビジュアライゼーションは、全体トレーニングセットから個々のサンプルまでの分析をサポートする。
論文 参考訳(メタデータ) (2022-06-19T08:55:07Z) - CARE: Coherent Actionable Recourse based on Sound Counterfactual
Explanations [0.0]
本稿では,モデルおよびユーザレベルのデシダータに対処するモジュール型説明フレームワークであるCAREを紹介する。
モデルに依存しないアプローチとして、CAREはブラックボックスモデルに対して複数の多様な説明を生成する。
論文 参考訳(メタデータ) (2021-08-18T15:26:59Z) - Improving Label Quality by Jointly Modeling Items and Annotators [68.8204255655161]
雑音アノテータから基底真理ラベルを学習するための完全ベイズ的枠組みを提案する。
我々のフレームワークは、ラベル分布上の生成的ベイズソフトクラスタリングモデルを古典的なDavidとSkeneのジョイントアノテータデータモデルに分解することでスケーラビリティを保証する。
論文 参考訳(メタデータ) (2021-06-20T02:15:20Z) - BCFNet: A Balanced Collaborative Filtering Network with Attention
Mechanism [106.43103176833371]
協調フィルタリング(CF)ベースの推奨方法が広く研究されている。
BCFNet(Balanced Collaborative Filtering Network)という新しい推薦モデルを提案する。
さらに注意機構は、暗黙のフィードバックの中で隠れた情報をよりよく捉え、ニューラルネットワークの学習能力を強化するように設計されている。
論文 参考訳(メタデータ) (2021-03-10T14:59:23Z) - A Framework to Learn with Interpretation [2.3741312212138896]
本稿では,予測モデルとその関連解釈モデルを共同で学習する新しい枠組みを提案する。
我々は,選択した隠れ層の出力を入力として取り込む,高レベル属性関数の小型辞書を求める。
学習した機能を視覚化する詳細なパイプラインも開発されている。
論文 参考訳(メタデータ) (2020-10-19T09:26:28Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。