論文の概要: ArchesWeather: An efficient AI weather forecasting model at 1.5° resolution
- arxiv url: http://arxiv.org/abs/2405.14527v2
- Date: Wed, 3 Jul 2024 12:39:58 GMT
- ステータス: 処理完了
- システム内更新日: 2024-07-04 19:34:44.216538
- Title: ArchesWeather: An efficient AI weather forecasting model at 1.5° resolution
- Title(参考訳): ArchesWeather: 1.5°解像度の効率的なAI天気予報モデル
- Authors: Guillaume Couairon, Christian Lessig, Anastase Charantonis, Claire Monteleoni,
- Abstract要約: そこで,Pangu-Weatherの3次元局所処理は計算的に準最適であることを示す。
2次元アテンションとカラムワイズアテンションに基づく特徴相互作用モジュールを組み合わせたトランスフォーマーモデルArchesWeatherを設計する。
ArchesWeatherは1.5degの解像度と24hのリードタイムでトレーニングされている。
- 参考スコア(独自算出の注目度): 12.404004942884523
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: One of the guiding principles for designing AI-based weather forecasting systems is to embed physical constraints as inductive priors in the neural network architecture. A popular prior is locality, where the atmospheric data is processed with local neural interactions, like 3D convolutions or 3D local attention windows as in Pangu-Weather. On the other hand, some works have shown great success in weather forecasting without this locality principle, at the cost of a much higher parameter count. In this paper, we show that the 3D local processing in Pangu-Weather is computationally sub-optimal. We design ArchesWeather, a transformer model that combines 2D attention with a column-wise attention-based feature interaction module, and demonstrate that this design improves forecasting skill. ArchesWeather is trained at 1.5{\deg} resolution and 24h lead time, with a training budget of a few GPU-days and a lower inference cost than competing methods. An ensemble of four of our models shows better RMSE scores than the IFS HRES and is competitive with the 1.4{\deg} 50-members NeuralGCM ensemble for one to three days ahead forecasting. Our code and models are publicly available at https://github.com/gcouairon/ArchesWeather.
- Abstract(参考訳): AIベースの天気予報システムを設計する上での指針の1つは、ニューラルネットワークアーキテクチャにインダクティブプリエントとして物理的な制約を埋め込むことである。
3D畳み込みやPangu-Weatherのような3Dローカルアテンションウィンドウのように、大気データは局所的なニューラルな相互作用で処理される。
一方で、この局所性原理を使わずに天気予報に大きな成功を収めた研究もある。
本稿では,Pangu-Weatherにおける3次元局所処理が計算的に準最適であることを示す。
本稿では,2次元アテンションとカラム単位のアテンションに基づく特徴相互作用モジュールを組み合わせたトランスフォーマーモデルArchesWeatherを設計し,この設計が予測能力の向上を実証する。
ArchesWeatherは1.5{\deg}の解像度と24時間リードタイムでトレーニングされている。
IFS HRESよりもRMSEスコアが優れており、1.4{\deg} 50メンバーのNeuralGCMアンサンブルと1~3日間の事前予測で競合している。
私たちのコードとモデルはhttps://github.com/gcouairon/ArchesWeather.comで公開されています。
関連論文リスト
- Generalizing Weather Forecast to Fine-grained Temporal Scales via Physics-AI Hybrid Modeling [55.13352174687475]
本稿では,天気予報をより微細なテンポラルスケールに一般化する物理AIハイブリッドモデル(WeatherGFT)を提案する。
具体的には、小さな時間スケールで物理進化をシミュレートするために、慎重に設計されたPDEカーネルを用いる。
我々は、異なるリードタイムでのモデルの一般化を促進するためのリードタイムアウェアトレーニングフレームワークを導入する。
論文 参考訳(メタデータ) (2024-05-22T16:21:02Z) - A Practical Probabilistic Benchmark for AI Weather Models [0.7978324349017066]
我々は、GraphCastとPanguの2つの主要なAI天気モデルが確率論的CRPSメトリクスに結びついていることを示す。
また、多くのデータ駆動気象モデルが採用している複数の時間-ステップ損失関数が、非生産的であることも明らかにした。
論文 参考訳(メタデータ) (2024-01-27T05:53:16Z) - Towards an end-to-end artificial intelligence driven global weather forecasting system [57.5191940978886]
我々は,地球規模の気象変動に対するAIに基づくデータ同化モデル,すなわちAdasを提案する。
我々は,アダスが地球観測を同化して高品質な分析を行い,長期にわたって安定して運用できることを実証した。
この手法を現実のシナリオに適用するのは,私たちが初めてです。
論文 参考訳(メタデータ) (2023-12-18T09:05:28Z) - Self-supervised Monocular Depth Estimation: Let's Talk About The Weather [2.836066255205732]
現在の自己監督型深度推定アーキテクチャは、深層ニューラルネットワークをトレーニングするために、晴れた晴れた天気のシーンに依存している。
本稿では,この問題を解決するために拡張を用いた手法を提案する。
我々は,提案手法であるRobust-Depthが,KITTIデータセット上でSotA性能を達成することを示すため,広範囲なテストを行う。
論文 参考訳(メタデータ) (2023-07-17T09:50:03Z) - Deep Learning for Day Forecasts from Sparse Observations [60.041805328514876]
深層ニューラルネットワークは、気象条件をモデル化するための代替パラダイムを提供する。
MetNet-3は、密度とスパースの両方のデータセンサーから学習し、降水、風、温度、露点を最大24時間前に予測する。
MetNet-3は、それぞれ時間分解能と空間分解能が高く、最大2分と1km、運用遅延は低い。
論文 参考訳(メタデータ) (2023-06-06T07:07:54Z) - WEDGE: A multi-weather autonomous driving dataset built from generative
vision-language models [51.61662672912017]
本稿では,視覚言語生成モデルを用いて生成した合成データセットWEDGEを紹介する。
WEDGEは16の極度の気象条件で3360枚の画像で構成され、16513個の境界ボックスを手動で注釈付けしている。
53.87%の検定精度と45.41mAPで分類・検出のためのベースライン性能を確立した。
論文 参考訳(メタデータ) (2023-05-12T14:42:47Z) - Pangu-Weather: A 3D High-Resolution Model for Fast and Accurate Global
Weather Forecast [91.9372563527801]
我々は,世界天気予報を迅速かつ高精度に予測するためのディープラーニングベースのシステムであるPangu-Weatherを紹介する。
初めてAIベースの手法が、最先端の数値天気予報法(NWP)を精度で上回った。
Pangu-Weatherは、極端な天気予報や大規模なアンサンブル予測など、幅広い下流予測シナリオをサポートしている。
論文 参考訳(メタデータ) (2022-11-03T17:19:43Z) - Physics Informed Shallow Machine Learning for Wind Speed Prediction [66.05661813632568]
イタリアの32カ所の標高10mの風速計から観測された大量の風のデータセットを分析した。
我々は、過去の風の履歴を用いて教師あり学習アルゴリズムを訓練し、その価値を将来予測する。
最適設計と性能は場所によって異なることがわかった。
論文 参考訳(メタデータ) (2022-04-01T14:55:10Z) - TENT: Tensorized Encoder Transformer for Temperature Forecasting [3.498371632913735]
天気予報のためのトランスフォーマーアーキテクチャに基づく新しいモデルを提案する。
元の変換器と3D畳み込みニューラルネットワークと比較して、提案したTENTモデルは、気象データの基本となる複雑なパターンをより良くモデル化できることを示す。
2つの実生活気象データセットの実験を行う。
論文 参考訳(メタデータ) (2021-06-28T14:17:22Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。