Regressor-free Molecule Generation to Support Drug Response Prediction
- URL: http://arxiv.org/abs/2405.14536v1
- Date: Thu, 23 May 2024 13:22:17 GMT
- Title: Regressor-free Molecule Generation to Support Drug Response Prediction
- Authors: Kun Li, Xiuwen Gong, Shirui Pan, Jia Wu, Bo Du, Wenbin Hu,
- Abstract summary: Conditional generation based on the target IC50 score can obtain a more effective sampling space.
Regressor-free guidance combines a diffusion model's score estimation with a regression controller model's gradient based on number labels.
- Score: 83.25894107956735
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: Drug response prediction (DRP) is a crucial phase in drug discovery, and the most important metric for its evaluation is the IC50 score. DRP results are heavily dependent on the quality of the generated molecules. Existing molecule generation methods typically employ classifier-based guidance, enabling sampling within the IC50 classification range. However, these methods fail to ensure the sampling space range's effectiveness, generating numerous ineffective molecules. Through experimental and theoretical study, we hypothesize that conditional generation based on the target IC50 score can obtain a more effective sampling space. As a result, we introduce regressor-free guidance molecule generation to ensure sampling within a more effective space and support DRP. Regressor-free guidance combines a diffusion model's score estimation with a regression controller model's gradient based on number labels. To effectively map regression labels between drugs and cell lines, we design a common-sense numerical knowledge graph that constrains the order of text representations. Experimental results on the real-world dataset for the DRP task demonstrate our method's effectiveness in drug discovery. The code is available at:https://anonymous.4open.science/r/RMCD-DBD1.
Related papers
- BAPULM: Binding Affinity Prediction using Language Models [7.136205674624813]
We introduce BAPULM, an innovative sequence-based framework that leverages the chemical latent representations of proteins via ProtT5-XL-U50 and through MolFormer.
Our approach was validated extensively on benchmark datasets, achieving sequential scoring power (R) values of 0.925 $pm$ 0.043, 0.914 $pm$ 0.004, and 0.8132 $pm$ 0.001 on benchmark1k2101, Test2016_290, and CSAR-HiQ_36, respectively.
arXiv Detail & Related papers (2024-11-06T04:35:30Z) - GramSeq-DTA: A grammar-based drug-target affinity prediction approach fusing gene expression information [1.2289361708127877]
We propose GramSeq-DTA, which integrates chemical perturbation information with the structural information of drugs and targets.
Our approach outperforms the current state-of-the-art DTA prediction models when validated on widely used DTA datasets.
arXiv Detail & Related papers (2024-11-03T03:17:09Z) - Extracting Training Data from Unconditional Diffusion Models [76.85077961718875]
diffusion probabilistic models (DPMs) are being employed as mainstream models for generative artificial intelligence (AI)
We aim to establish a theoretical understanding of memorization in DPMs with 1) a memorization metric for theoretical analysis, 2) an analysis of conditional memorization with informative and random labels, and 3) two better evaluation metrics for measuring memorization.
Based on the theoretical analysis, we propose a novel data extraction method called textbfSurrogate condItional Data Extraction (SIDE) that leverages a trained on generated data as a surrogate condition to extract training data directly from unconditional diffusion models.
arXiv Detail & Related papers (2024-06-18T16:20:12Z) - Optimizing OOD Detection in Molecular Graphs: A Novel Approach with Diffusion Models [71.39421638547164]
We propose to detect OOD molecules by adopting an auxiliary diffusion model-based framework, which compares similarities between input molecules and reconstructed graphs.
Due to the generative bias towards reconstructing ID training samples, the similarity scores of OOD molecules will be much lower to facilitate detection.
Our research pioneers an approach of Prototypical Graph Reconstruction for Molecular OOD Detection, dubbed as PGR-MOOD and hinges on three innovations.
arXiv Detail & Related papers (2024-04-24T03:25:53Z) - CLDR: Contrastive Learning Drug Response Models from Natural Language
Supervision [15.330792768046615]
We propose MN, a contrastive learning framework with natural language supervision.
We validated several hundred thousand samples from the Genomics of Drug Sensitivity in Cancer dataset.
Experiments prove that the MNeffectively constrains the samples to a continuous distribution in the representation space.
arXiv Detail & Related papers (2023-12-17T12:51:49Z) - Zero-shot Learning of Drug Response Prediction for Preclinical Drug
Screening [38.94493676651818]
We propose a zero-shot learning solution for the.
task in preclinical drug screening.
Specifically, we propose a Multi-branch Multi-Source Domain Adaptation Test Enhancement Plug-in, called MSDA.
arXiv Detail & Related papers (2023-10-05T05:55:41Z) - Drug Synergistic Combinations Predictions via Large-Scale Pre-Training
and Graph Structure Learning [82.93806087715507]
Drug combination therapy is a well-established strategy for disease treatment with better effectiveness and less safety degradation.
Deep learning models have emerged as an efficient way to discover synergistic combinations.
Our framework achieves state-of-the-art results in comparison with other deep learning-based methods.
arXiv Detail & Related papers (2023-01-14T15:07:43Z) - SSM-DTA: Breaking the Barriers of Data Scarcity in Drug-Target Affinity
Prediction [127.43571146741984]
Drug-Target Affinity (DTA) is of vital importance in early-stage drug discovery.
wet experiments remain the most reliable method, but they are time-consuming and resource-intensive.
Existing methods have primarily focused on developing techniques based on the available DTA data, without adequately addressing the data scarcity issue.
We present the SSM-DTA framework, which incorporates three simple yet highly effective strategies.
arXiv Detail & Related papers (2022-06-20T14:53:25Z) - Exploring Chemical Space with Score-based Out-of-distribution Generation [57.15855198512551]
We propose a score-based diffusion scheme that incorporates out-of-distribution control in the generative differential equation (SDE)
Since some novel molecules may not meet the basic requirements of real-world drugs, MOOD performs conditional generation by utilizing the gradients from a property predictor.
We experimentally validate that MOOD is able to explore the chemical space beyond the training distribution, generating molecules that outscore ones found with existing methods, and even the top 0.01% of the original training pool.
arXiv Detail & Related papers (2022-06-06T06:17:11Z) - Drug-Drug Interaction Prediction with Wasserstein Adversarial
Autoencoder-based Knowledge Graph Embeddings [22.562175708415392]
We propose a new knowledge graph embedding framework for drug-drug interactions.
In our framework, the autoencoder is employed to generate high-quality negative samples.
The discriminator learns the embeddings of drugs and interactions based on both positive and negative triplets.
arXiv Detail & Related papers (2020-04-15T21:03:29Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.