Deep Learning Classification of Photoplethysmogram Signal for Hypertension Levels
- URL: http://arxiv.org/abs/2405.14556v1
- Date: Thu, 23 May 2024 13:35:53 GMT
- Title: Deep Learning Classification of Photoplethysmogram Signal for Hypertension Levels
- Authors: Nida Nasir, Mustafa Sameer, Feras Barneih, Omar Alshaltone, Muneeb Ahmed,
- Abstract summary: The classification has been done for two categories: Prehypertension (normal levels) and Hypertension (includes Stage I and Stage II)
With precision and specificity of 100% and recall of 82.1%, the LSTM model provides the best results among all combinations of Neural Networks.
The maximum accuracy of 71.9% is achieved by the LSTM-CNN model.
- Score: 2.289386500039994
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: Continuous photoplethysmography (PPG)-based blood pressure monitoring is necessary for healthcare and fitness applications. In Artificial Intelligence (AI), signal classification levels with the machine and deep learning arrangements need to be explored further. Techniques based on time-frequency spectra, such as Short-time Fourier Transform (STFT), have been used to address the challenges of motion artifact correction. Therefore, the proposed study works with PPG signals of more than 200 patients (650+ signal samples) with hypertension, using STFT with various Neural Networks (Convolution Neural Network (CNN), Long Short-Term Memory (LSTM), Bidirectional Long Short-Term Memory (Bi-LSTM), followed by machine learning classifiers, such as, Support Vector Machine (SVM) and Random Forest (RF). The classification has been done for two categories: Prehypertension (normal levels) and Hypertension (includes Stage I and Stage II). Various performance metrics have been obtained with two batch sizes of 3 and 16 for the fusion of the neural networks. With precision and specificity of 100% and recall of 82.1%, the LSTM model provides the best results among all combinations of Neural Networks. However, the maximum accuracy of 71.9% is achieved by the LSTM-CNN model. Further stacked Ensemble method has been used to achieve 100% accuracy for Meta-LSTM-RF, Meta- LSTM-CNN-RF and Meta- STFT-CNN-SVM.
Related papers
- MC-QDSNN: Quantized Deep evolutionary SNN with Multi-Dendritic Compartment Neurons for Stress Detection using Physiological Signals [1.474723404975345]
This work proposes Multi-Compartment Leaky (MCLeaky) neuron as a viable alternative for efficient processing of time series data.
The proposed MCLeaky neuron based Spiking Neural Network model and its quantized variant were benchmarked against state-of-the-art (SOTA) Spiking LSTMs.
Results show that networks with MCLeaky activation neuron managed a superior accuracy of 98.8% to detect stress.
arXiv Detail & Related papers (2024-10-07T12:48:03Z) - Prototype Learning Guided Hybrid Network for Breast Tumor Segmentation in DCE-MRI [58.809276442508256]
We propose a hybrid network via the combination of convolution neural network (CNN) and transformer layers.
The experimental results on private and public DCE-MRI datasets demonstrate that the proposed hybrid network superior performance than the state-of-the-art methods.
arXiv Detail & Related papers (2024-08-11T15:46:00Z) - Evaluation of QCNN-LSTM for Disability Forecasting in Multiple Sclerosis
Using Sequential Multisequence MRI [0.0]
Long ShortTerm Memory (LSTM) models were studied to provide sequential relationships for each timepoint in MRIs of patients with Multiple Sclerosis (MS)
Our hypothesis is that quantum models will provide competitive performance.
arXiv Detail & Related papers (2024-01-22T17:14:47Z) - Continuous time recurrent neural networks: overview and application to
forecasting blood glucose in the intensive care unit [56.801856519460465]
Continuous time autoregressive recurrent neural networks (CTRNNs) are a deep learning model that account for irregular observations.
We demonstrate the application of these models to probabilistic forecasting of blood glucose in a critical care setting.
arXiv Detail & Related papers (2023-04-14T09:39:06Z) - Image Classification using Sequence of Pixels [3.04585143845864]
This study compares sequential image classification methods based on recurrent neural networks.
We describe methods based on Long-Short-Term memory(LSTM), bidirectional Long-Short-Term memory(BiLSTM) architectures, etc.
arXiv Detail & Related papers (2022-09-23T09:42:44Z) - Bayesian Neural Network Language Modeling for Speech Recognition [59.681758762712754]
State-of-the-art neural network language models (NNLMs) represented by long short term memory recurrent neural networks (LSTM-RNNs) and Transformers are becoming highly complex.
In this paper, an overarching full Bayesian learning framework is proposed to account for the underlying uncertainty in LSTM-RNN and Transformer LMs.
arXiv Detail & Related papers (2022-08-28T17:50:19Z) - A Deep Learning Network for the Classification of Intracardiac
Electrograms in Atrial Tachycardia [4.62891362095648]
Key technology enabling the success of catheter ablation treatment for atrial tachycardia is activation mapping.
This is a time-consuming and error-prone procedure, due to the difficulty in identifying the signal activation peaks for fractionated signals.
This work presents a Deep Learning approach for the automated classification of EGM signals into three different types.
arXiv Detail & Related papers (2022-06-02T09:56:27Z) - Mixed Precision Low-bit Quantization of Neural Network Language Models
for Speech Recognition [67.95996816744251]
State-of-the-art language models (LMs) represented by long-short term memory recurrent neural networks (LSTM-RNNs) and Transformers are becoming increasingly complex and expensive for practical applications.
Current quantization methods are based on uniform precision and fail to account for the varying performance sensitivity at different parts of LMs to quantization errors.
Novel mixed precision neural network LM quantization methods are proposed in this paper.
arXiv Detail & Related papers (2021-11-29T12:24:02Z) - SOUL: An Energy-Efficient Unsupervised Online Learning Seizure Detection
Classifier [68.8204255655161]
Implantable devices that record neural activity and detect seizures have been adopted to issue warnings or trigger neurostimulation to suppress seizures.
For an implantable seizure detection system, a low power, at-the-edge, online learning algorithm can be employed to dynamically adapt to neural signal drifts.
SOUL was fabricated in TSMC's 28 nm process occupying 0.1 mm2 and achieves 1.5 nJ/classification energy efficiency, which is at least 24x more efficient than state-of-the-art.
arXiv Detail & Related papers (2021-10-01T23:01:20Z) - CovidDeep: SARS-CoV-2/COVID-19 Test Based on Wearable Medical Sensors
and Efficient Neural Networks [51.589769497681175]
The novel coronavirus (SARS-CoV-2) has led to a pandemic.
The current testing regime based on Reverse Transcription-Polymerase Chain Reaction for SARS-CoV-2 has been unable to keep up with testing demands.
We propose a framework called CovidDeep that combines efficient DNNs with commercially available WMSs for pervasive testing of the virus.
arXiv Detail & Related papers (2020-07-20T21:47:28Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.