論文の概要: Surge Phenomenon in Optimal Learning Rate and Batch Size Scaling
- arxiv url: http://arxiv.org/abs/2405.14578v2
- Date: Fri, 31 May 2024 08:01:56 GMT
- ステータス: 処理完了
- システム内更新日: 2024-06-03 19:13:28.775872
- Title: Surge Phenomenon in Optimal Learning Rate and Batch Size Scaling
- Title(参考訳): 最適学習率とバッチサイズスケーリングにおけるサージ現象
- Authors: Shuaipeng Li, Penghao Zhao, Hailin Zhang, Xingwu Sun, Hao Wu, Dian Jiao, Weiyan Wang, Chengjun Liu, Zheng Fang, Jinbao Xue, Yangyu Tao, Bin Cui, Di Wang,
- Abstract要約: 本稿では,Adamスタイルにおける最適学習率とバッチサイズとの関係について検討する。
最適学習率が最初に上昇し、バッチサイズが大きくなるにつれて低下することを示す。
- 参考スコア(独自算出の注目度): 27.058009599819012
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: In current deep learning tasks, Adam style optimizers such as Adam, Adagrad, RMSProp, Adafactor, and Lion have been widely used as alternatives to SGD style optimizers. These optimizers typically update model parameters using the sign of gradients, resulting in more stable convergence curves. The learning rate and the batch size are the most critical hyperparameters for optimizers, which require careful tuning to enable effective convergence. Previous research has shown that the optimal learning rate increases linearly or follows similar rules with batch size for SGD style optimizers. However, this conclusion is not applicable to Adam style optimizers. In this paper, we elucidate the connection between optimal learning rates and batch sizes for Adam style optimizers through both theoretical analysis and extensive experiments. First, we raise the scaling law between batch sizes and optimal learning rates in the sign of gradient case, in which we prove that the optimal learning rate first rises and then falls as the batch size increases. Moreover, the peak value of the surge will gradually move toward the larger batch size as training progresses. Second, we conducted experiments on various CV and NLP tasks and verified the correctness of the scaling law.
- Abstract(参考訳): 現在のディープラーニングタスクでは、Adam、Adagrad、RMSProp、Adafactor、LionといったAdamスタイルオプティマイザがSGDスタイルオプティマイザの代替として広く使用されている。
これらのオプティマイザは通常、勾配の符号を使ってモデルパラメータを更新し、より安定した収束曲線をもたらす。
学習速度とバッチサイズはオプティマイザにとって最も重要なハイパーパラメータであり、効果的な収束を実現するためには注意深いチューニングが必要である。
従来の研究では、最適学習率が線形に増加するか、SGDスタイルオプティマイザのバッチサイズに類似したルールに従うことが示されている。
しかし、この結論はAdamスタイルのオプティマイザには当てはまらない。
本稿では,Adamスタイルオプティマイザの最適学習率とバッチサイズとの関係を理論的解析と広範囲な実験により解明する。
まず, バッチサイズと最適学習率の間のスケーリング法則を勾配の符号で表し, 最適学習率が最初に上昇し, バッチサイズが大きくなるにつれて低下することを示す。
さらに、トレーニングが進むにつれて、サージのピーク値は、より大きなバッチサイズへと徐々に移動します。
第2に,各種CVおよびNLPタスクの実験を行い,スケーリング法則の正当性を検証した。
関連論文リスト
- Adaptive Preference Scaling for Reinforcement Learning with Human Feedback [103.36048042664768]
人間からのフィードバックからの強化学習(RLHF)は、AIシステムと人間の価値を合わせるための一般的なアプローチである。
本稿では,分散ロバスト最適化(DRO)に基づく適応的優先損失を提案する。
提案手法は多用途であり,様々な選好最適化フレームワークに容易に適用可能である。
論文 参考訳(メタデータ) (2024-06-04T20:33:22Z) - AdAdaGrad: Adaptive Batch Size Schemes for Adaptive Gradient Methods [17.043034606088234]
本稿では,AdAdaGradのスカラー変種AdAdaGradNormについて紹介する。
また,画像分類実験を行い,提案手法のメリットを強調した。
論文 参考訳(メタデータ) (2024-02-17T07:49:50Z) - AdaLomo: Low-memory Optimization with Adaptive Learning Rate [59.64965955386855]
大規模言語モデルに対する適応学習率(AdaLomo)を用いた低メモリ最適化を提案する。
AdaLomoはAdamWと同等の結果を得ると同時に、メモリ要件を大幅に削減し、大きな言語モデルをトレーニングするためのハードウェア障壁を低くする。
論文 参考訳(メタデータ) (2023-10-16T09:04:28Z) - Read the Signs: Towards Invariance to Gradient Descent's Hyperparameter
Initialization [3.1153758106426603]
学習速度を$alpha$でローカライズする最適化メタアルゴリズムであるActiveLRを提案し,各エポックの勾配が符号を変更するか否かに応じて各エポックに適応する。
我々は、広く使われ、最近公開された勾配勾配勾配、すなわち運動量を持つSGD、AdamW、RAdam、AdaBeliefのアクティブバージョン(我々のもの)を実装している。
論文 参考訳(メタデータ) (2023-01-24T16:57:00Z) - Adaptive Optimization with Examplewise Gradients [23.504973357538418]
本稿では,機械学習のための勾配に基づく最適化手法の設計に対して,より汎用的なアプローチを提案する。
この新しいフレームワークでは、イテレーションは単一の見積もりではなく、パラメータごとの見積もりのバッチへのアクセスを前提としています。
これは、典型的な機械学習のセットアップで実際に利用できる情報を反映している。
論文 参考訳(メタデータ) (2021-11-30T23:37:01Z) - Tom: Leveraging trend of the observed gradients for faster convergence [0.0]
TomはAdamの新しい変種であり、ニューラルネットワークによって渡される損失の風景の勾配の傾向を考慮に入れている。
Tomは両方の精度でAdagrad、Adadelta、RMSProp、Adamを上回り、より早く収束する。
論文 参考訳(メタデータ) (2021-09-07T20:19:40Z) - MaxVA: Fast Adaptation of Step Sizes by Maximizing Observed Variance of
Gradients [112.00379151834242]
本稿では,Adamにおける2乗勾配のランニング平均を重み付き平均に置き換える適応学習率の原理を提案する。
これにより、より高速な適応が可能となり、より望ましい経験的収束挙動がもたらされる。
論文 参考訳(メタデータ) (2020-06-21T21:47:43Z) - Extrapolation for Large-batch Training in Deep Learning [72.61259487233214]
我々は、バリエーションのホストが、我々が提案する統一されたフレームワークでカバー可能であることを示す。
本稿では,この手法の収束性を証明し,ResNet,LSTM,Transformer上での経験的性能を厳格に評価する。
論文 参考訳(メタデータ) (2020-06-10T08:22:41Z) - Adaptive Learning of the Optimal Batch Size of SGD [52.50880550357175]
本稿では,その繰り返しを通じて最適なバッチサイズを適応的に学習し,凸度と滑らかな関数を求める手法を提案する。
実験では、合成データと実データを用いて、ほぼ最適な振る舞いを示す。
我々は,本手法を分散実装に適したサンプリングを含む,文献上考慮されていないいくつかの新しいバッチ戦略に一般化する。
論文 参考訳(メタデータ) (2020-05-03T14:28:32Z) - Large Batch Training Does Not Need Warmup [111.07680619360528]
大きなバッチサイズを使用してディープニューラルネットワークをトレーニングすることは、有望な結果を示し、多くの現実世界のアプリケーションに利益をもたらしている。
本稿では,大規模バッチ学習のための全層適応レートスケーリング(CLARS)アルゴリズムを提案する。
分析に基づいて,このギャップを埋め,3つの一般的な大規模バッチトレーニング手法の理論的洞察を提示する。
論文 参考訳(メタデータ) (2020-02-04T23:03:12Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。