SE3D: A Framework For Saliency Method Evaluation In 3D Imaging
- URL: http://arxiv.org/abs/2405.14584v2
- Date: Sun, 4 Aug 2024 16:26:10 GMT
- Title: SE3D: A Framework For Saliency Method Evaluation In 3D Imaging
- Authors: Mariusz Wiśniewski, Loris Giulivi, Giacomo Boracchi,
- Abstract summary: 3D Convolutional Neural Networks (3D CNNs) are able to process LIDAR, MRI, and CT scans, with significant implications for fields such as autonomous driving and medical imaging.
Despite recent advances in Explainable Artificial Intelligence, little effort has been devoted to explaining 3D CNNs.
We propose SE3D: a framework for Saliency method Evaluation in 3D imaging.
- Score: 4.090991964172346
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: For more than a decade, deep learning models have been dominating in various 2D imaging tasks. Their application is now extending to 3D imaging, with 3D Convolutional Neural Networks (3D CNNs) being able to process LIDAR, MRI, and CT scans, with significant implications for fields such as autonomous driving and medical imaging. In these critical settings, explaining the model's decisions is fundamental. Despite recent advances in Explainable Artificial Intelligence, however, little effort has been devoted to explaining 3D CNNs, and many works explain these models via inadequate extensions of 2D saliency methods. A fundamental limitation to the development of 3D saliency methods is the lack of a benchmark to quantitatively assess these on 3D data. To address this issue, we propose SE3D: a framework for Saliency method Evaluation in 3D imaging. We propose modifications to ShapeNet, ScanNet, and BraTS datasets, and evaluation metrics to assess saliency methods for 3D CNNs. We evaluate both state-of-the-art saliency methods designed for 3D data and extensions of popular 2D saliency methods to 3D. Our experiments show that 3D saliency methods do not provide explanations of sufficient quality, and that there is margin for future improvements and safer applications of 3D CNNs in critical fields.
Related papers
- PonderV2: Pave the Way for 3D Foundation Model with A Universal
Pre-training Paradigm [114.47216525866435]
We introduce a novel universal 3D pre-training framework designed to facilitate the acquisition of efficient 3D representation.
For the first time, PonderV2 achieves state-of-the-art performance on 11 indoor and outdoor benchmarks, implying its effectiveness.
arXiv Detail & Related papers (2023-10-12T17:59:57Z) - AG3D: Learning to Generate 3D Avatars from 2D Image Collections [96.28021214088746]
We propose a new adversarial generative model of realistic 3D people from 2D images.
Our method captures shape and deformation of the body and loose clothing by adopting a holistic 3D generator.
We experimentally find that our method outperforms previous 3D- and articulation-aware methods in terms of geometry and appearance.
arXiv Detail & Related papers (2023-05-03T17:56:24Z) - Super Images -- A New 2D Perspective on 3D Medical Imaging Analysis [0.0]
We present a simple yet effective 2D method to handle 3D data while efficiently embedding the 3D knowledge during training.
Our method generates a super-resolution image by stitching slices side by side in the 3D image.
While attaining equal, if not superior, results to 3D networks utilizing only 2D counterparts, the model complexity is reduced by around threefold.
arXiv Detail & Related papers (2022-05-05T09:59:03Z) - DRaCoN -- Differentiable Rasterization Conditioned Neural Radiance
Fields for Articulated Avatars [92.37436369781692]
We present DRaCoN, a framework for learning full-body volumetric avatars.
It exploits the advantages of both the 2D and 3D neural rendering techniques.
Experiments on the challenging ZJU-MoCap and Human3.6M datasets indicate that DRaCoN outperforms state-of-the-art methods.
arXiv Detail & Related papers (2022-03-29T17:59:15Z) - Data Efficient 3D Learner via Knowledge Transferred from 2D Model [30.077342050473515]
We deal with the data scarcity challenge of 3D tasks by transferring knowledge from strong 2D models via RGB-D images.
We utilize a strong and well-trained semantic segmentation model for 2D images to augment RGB-D images with pseudo-label.
Our method already outperforms existing state-of-the-art that is tailored for 3D label efficiency.
arXiv Detail & Related papers (2022-03-16T09:14:44Z) - FCOS3D: Fully Convolutional One-Stage Monocular 3D Object Detection [78.00922683083776]
It is non-trivial to make a general adapted 2D detector work in this 3D task.
In this technical report, we study this problem with a practice built on fully convolutional single-stage detector.
Our solution achieves 1st place out of all the vision-only methods in the nuScenes 3D detection challenge of NeurIPS 2020.
arXiv Detail & Related papers (2021-04-22T09:35:35Z) - Cylinder3D: An Effective 3D Framework for Driving-scene LiDAR Semantic
Segmentation [87.54570024320354]
State-of-the-art methods for large-scale driving-scene LiDAR semantic segmentation often project and process the point clouds in the 2D space.
A straightforward solution to tackle the issue of 3D-to-2D projection is to keep the 3D representation and process the points in the 3D space.
We develop a 3D cylinder partition and a 3D cylinder convolution based framework, termed as Cylinder3D, which exploits the 3D topology relations and structures of driving-scene point clouds.
arXiv Detail & Related papers (2020-08-04T13:56:19Z) - 3D Self-Supervised Methods for Medical Imaging [7.65168530693281]
We propose 3D versions for five different self-supervised methods, in the form of proxy tasks.
Our methods facilitate neural network feature learning from unlabeled 3D images, aiming to reduce the required cost for expert annotation.
The developed algorithms are 3D Contrastive Predictive Coding, 3D Rotation prediction, 3D Jigsaw puzzles, Relative 3D patch location, and 3D Exemplar networks.
arXiv Detail & Related papers (2020-06-06T09:56:58Z) - 2.75D: Boosting learning by representing 3D Medical imaging to 2D
features for small data [54.223614679807994]
3D convolutional neural networks (CNNs) have started to show superior performance to 2D CNNs in numerous deep learning tasks.
Applying transfer learning on 3D CNN is challenging due to a lack of publicly available pre-trained 3D models.
In this work, we proposed a novel 2D strategical representation of volumetric data, namely 2.75D.
As a result, 2D CNN networks can also be used to learn volumetric information.
arXiv Detail & Related papers (2020-02-11T08:24:19Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.