Linear Mode Connectivity in Differentiable Tree Ensembles
- URL: http://arxiv.org/abs/2405.14596v1
- Date: Thu, 23 May 2024 14:11:26 GMT
- Title: Linear Mode Connectivity in Differentiable Tree Ensembles
- Authors: Ryuichi Kanoh, Mahito Sugiyama,
- Abstract summary: Linear Mode Connectivity (LMC) refers to the phenomenon that remains consistent for linearly interpolated models in the parameter space.
We first achieve LMC for soft tree neurons, which are tree-based differentiable models extensively used in practice.
- Score: 13.704584231053675
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Linear Mode Connectivity (LMC) refers to the phenomenon that performance remains consistent for linearly interpolated models in the parameter space. For independently optimized model pairs from different random initializations, achieving LMC is considered crucial for validating the stable success of the non-convex optimization in modern machine learning models and for facilitating practical parameter-based operations such as model merging. While LMC has been achieved for neural networks by considering the permutation invariance of neurons in each hidden layer, its attainment for other models remains an open question. In this paper, we first achieve LMC for soft tree ensembles, which are tree-based differentiable models extensively used in practice. We show the necessity of incorporating two invariances: subtree flip invariance and splitting order invariance, which do not exist in neural networks but are inherent to tree architectures, in addition to permutation invariance of trees. Moreover, we demonstrate that it is even possible to exclude such additional invariances while keeping LMC by designing decision list-based tree architectures, where such invariances do not exist by definition. Our findings indicate the significance of accounting for architecture-specific invariances in achieving LMC.
Related papers
- SMART: A Flexible Approach to Regression using Spline-Based Multivariate Adaptive Regression Trees [0.0]
Decision trees are powerful for predictive modeling but often suffer from high variance when modeling continuous relationships.
We introduce Spline-based Multivariate Adaptive Regression Trees (MARS), which uses a decision tree to identify subsets of data with distinct continuous relationships.
MARS's native ability to handle higher-order terms allows the tree to focus solely on identifying discontinuities in the relationship.
arXiv Detail & Related papers (2024-10-08T01:18:08Z) - An efficient solution to Hidden Markov Models on trees with coupled branches [0.0]
We extend the framework of Hidden Models (HMMs) on trees to address scenarios where the tree-like structure of the data includes coupled branches.
We develop a programming algorithm that efficiently solves the likelihood, decoding, and parameter learning problems for tree-based HMMs with coupled branches.
arXiv Detail & Related papers (2024-06-03T18:00:00Z) - Latent Semantic Consensus For Deterministic Geometric Model Fitting [109.44565542031384]
We propose an effective method called Latent Semantic Consensus (LSC)
LSC formulates the model fitting problem into two latent semantic spaces based on data points and model hypotheses.
LSC is able to provide consistent and reliable solutions within only a few milliseconds for general multi-structural model fitting.
arXiv Detail & Related papers (2024-03-11T05:35:38Z) - Sample Complexity Characterization for Linear Contextual MDPs [67.79455646673762]
Contextual decision processes (CMDPs) describe a class of reinforcement learning problems in which the transition kernels and reward functions can change over time with different MDPs indexed by a context variable.
CMDPs serve as an important framework to model many real-world applications with time-varying environments.
We study CMDPs under two linear function approximation models: Model I with context-varying representations and common linear weights for all contexts; and Model II with common representations for all contexts and context-varying linear weights.
arXiv Detail & Related papers (2024-02-05T03:25:04Z) - A tree-based varying coefficient model [0.0]
The paper introduces a tree-based varying coefficient model (VCM) where the varying coefficients are modelled using the cyclic gradient boosting machine (CGBM)
The dimension-wise early stopping not only reduces the risk of dimension-specific overfitting, but also reveals differences in model complexity across dimensions.
The model is evaluated on the same simulated and real data examples as those used in Richman and W"uthrich (2023), and the results show that it produces results in terms of out of sample loss that are comparable to those of their neural network-based VCM called LocalGLMnet.
arXiv Detail & Related papers (2024-01-11T15:35:32Z) - A cautionary tale on fitting decision trees to data from additive
models: generalization lower bounds [9.546094657606178]
We study the generalization performance of decision trees with respect to different generative regression models.
This allows us to elicit their inductive bias, that is, the assumptions the algorithms make (or do not make) to generalize to new data.
We prove a sharp squared error generalization lower bound for a large class of decision tree algorithms fitted to sparse additive models.
arXiv Detail & Related papers (2021-10-18T21:22:40Z) - Autoregressive Score Matching [113.4502004812927]
We propose autoregressive conditional score models (AR-CSM) where we parameterize the joint distribution in terms of the derivatives of univariable log-conditionals (scores)
For AR-CSM models, this divergence between data and model distributions can be computed and optimized efficiently, requiring no expensive sampling or adversarial training.
We show with extensive experimental results that it can be applied to density estimation on synthetic data, image generation, image denoising, and training latent variable models with implicit encoders.
arXiv Detail & Related papers (2020-10-24T07:01:24Z) - Identification of Probability weighted ARX models with arbitrary domains [75.91002178647165]
PieceWise Affine models guarantees universal approximation, local linearity and equivalence to other classes of hybrid system.
In this work, we focus on the identification of PieceWise Auto Regressive with eXogenous input models with arbitrary regions (NPWARX)
The architecture is conceived following the Mixture of Expert concept, developed within the machine learning field.
arXiv Detail & Related papers (2020-09-29T12:50:33Z) - Provably Efficient Neural Estimation of Structural Equation Model: An
Adversarial Approach [144.21892195917758]
We study estimation in a class of generalized Structural equation models (SEMs)
We formulate the linear operator equation as a min-max game, where both players are parameterized by neural networks (NNs), and learn the parameters of these neural networks using a gradient descent.
For the first time we provide a tractable estimation procedure for SEMs based on NNs with provable convergence and without the need for sample splitting.
arXiv Detail & Related papers (2020-07-02T17:55:47Z) - Monotone operator equilibrium networks [97.86610752856987]
We develop a new class of implicit-depth model based on the theory of monotone operators, the Monotone Operator Equilibrium Network (monDEQ)
We show the close connection between finding the equilibrium point of an implicit network and solving a form of monotone operator splitting problem.
We then develop a parameterization of the network which ensures that all operators remain monotone, which guarantees the existence of a unique equilibrium point.
arXiv Detail & Related papers (2020-06-15T17:57:31Z) - Struct-MMSB: Mixed Membership Stochastic Blockmodels with Interpretable
Structured Priors [13.712395104755783]
Mixed membership blockmodel (MMSB) is a popular framework for community detection and network generation.
We present a flexible MMSB model, textitStruct-MMSB, that uses a recently developed statistical relational learning model, hinge-loss Markov random fields (HL-MRFs)
Our model is capable of learning latent characteristics in real-world networks via meaningful latent variables encoded as a complex combination of observed features and membership distributions.
arXiv Detail & Related papers (2020-02-21T19:32:32Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.